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ABSTRACT 

 

 

Easy to Find: Creating Query-based Multi-Document Summaries to Enhance Web Search  

 

 

 

Rani Qumsiyeh 

 

Department of Computer Science 

 

Master of Science 

 

 
Current web search engines, such as Google, Yahoo!, and Bing, rank the set of documents S retrieved in 

response to a user query Q and display each document with a title and a snippet, which serves as an 

abstract of the corresponding document in S. Snippets, however, are not as useful as they are designed for, 

i.e., to assist search engine users to quickly identify results of interest, if they exist, without browsing 

through the documents in S, since they (i) often include very similar information and (ii) do not capture 

the main content of the corresponding documents. Moreover, when the intended information need 

specified in a search query is ambiguous, it is difficult, if not impossible, for a search engine to identify 

precisely the set of documents that satisfy the user‟s intended request. Furthermore, a document title 

retrieved by web search engines is not always a good indicator of the content of the corresponding 

document, since it is not always informative. All these design problems can be solved by our proposed 

query-based, web informative summarization engine, denoted Q-WISE. Q-WISE clusters documents in S, 

which allows users to view segregated document collections created according to the specific topic 

covered in each collection, and generates a concise/comprehensive summary for each collection/cluster of 

documents. Q-WISE is also equipped with a query suggestion module that provides a guide to its users in 

formulating a keyword query, which facilitates the web search and improves the precision and recall of 

the search results. Experimental results show that Q-WISE is highly effective and efficient in generating a 

high quality summary for each cluster of documents on a specific topic, retrieved in response to a Q-WISE 

user‟s query. The empirical study also shows that Q-WISE‟s clustering algorithm is highly accurate, 

labels generated for the clusters are useful and often reflect the topic of the corresponding clustered 

documents, and the performance of the query suggestion module of Q-WISE is comparable to commercial 

web search engines. 
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Chapter 1  

Introduction 

With hundreds of thousands of new electronic documents added to the Web each day [Trout 10], 

it is essential for web search engines to continuously enhance their current mechanisms for 

extracting and ranking relevant results to meet web users‟ information needs effectively. Current 

web search engines rank retrieved documents based on their likely relevance to a user‟s query Q 

and display their titles with(out) a short snippet
1
. A snippet S, however, is (i) often very similar 

to the other snippets created for the same query, unless the search engine eliminates similar 

snippets [Goldstein 00] and (ii) created using sentences/phrases in the corresponding retrieved 

document solely based on the keywords that appear in Q, which may not capture the main 

content of the corresponding document. Moreover, a web search engine user often scans only a 

small number of snippets, usually in the range of 10 – 30 [Spink 00]. From the perspective of 

web users and search engine designers, web search engines must accurately capture the main 

content of retrieved documents in the form of summaries or a single summary, which provide(s) 

a snapshot view of the retrieved information to the users who can quickly draw a conclusion on 

their relevance with respect to their information needs. 

Recently, document summarization systems have emerged which automatically create a 

summary of a document or set of documents based on a search query [Daume 05, Yih 07, Wang 

09]. In these query-based (query-oriented) summarization systems, a summary is generated on 

(each of) the top-N ( ≥ 1) documents retrieved by a search engine in response to a user query, 

which allows ordinary web users, as well as professional information consumers and researchers, 

to quickly familiarize themselves with a large volume of retrieved information. If such a system 

                                                      
1
 A snippet, which is an abstract of a document, includes a couple of sentences intended to capture the 

content of the document and can be treated as a single-document summary [Yih 07]. 
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generates a single summary on multiple documents, it is a query-based multi-document 

summarization system. 

Multi-document summarization systems are regarded higher than their single-document 

counterparts [Khoo02]. The former provide an overview of the topics presented in a set of 

documents by (i) extracting mutual content across the documents while avoiding repetition, (ii) 

capturing unique (related, respectively) information in the documents, (iii) providing an 

overview of various subtopics, if they exist, of a particular subject, and (iv) identifying a subject 

or research topic that evolves over time. The automation of a multi-document summarization 

system is, however, a challenging task, since the system must (i) eliminate redundancy, i.e., 

same or similar information presented in different documents should be filtered, (ii) account for 

the temporal dimension, i.e., a new piece of information should override out-dated information, 

(iii) choose an ideal compression ratio to ensure that a summary includes sufficient contents of 

the corresponding documents in a reasonable length, (iv) achieve a (near-) complete coverage, 

i.e., capture the essential contents of the documents, and (v) resolve the co-reference issue 

among documents by detecting multiple references on the same subject [Kibble 00]. 

We propose to develop a query-based web informative summarization engine, called Q-

WISE, which solves all the system problems listed above. Q-WISE allows novice, as well as 

expert, users to post a query Q and quickly locate the desired information, if they exist, captured 

in a short summary. Q-WISE (i) queries three major web search engines (Google, Yahoo!, and 

Bing) using Q, (ii) clusters the retrieved documents (on the same topic) in response to Q and 

assigns meaningful labels, which are extracted from phrases in the titles and snippets of the 

retrieved documents, to the clusters, and (iii) creates a single summary of each cluster, which 

includes the most representative and informative sentences in the cluster. Although the titles and 
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snippets are not effective in capturing the contents of their corresponding documents, they are 

used instead of the entire documents in our clustering algorithm, since (i) they have sufficient 

informative content for the clustering step and (ii) experiments show that using the titles and 

snippets keeps clustering effectiveness the same, but enhances efficiency.  

A single summary for each cluster is appealing, since typical web search queries are short 

and often ambiguous in meaning [Shen 06], and a summary per query might not achieve 

conciseness while being comprehensive in capturing the contents presented in multiple retrieved 

documents. For example, if the search query is “tiger”, the retrieved documents can be various in 

terms of their contents, which might include the Mac Operating system, the animal tiger, the golf 

player Tiger Woods, and fish, etc. Thus, a single summary created for the entire retrieved set of 

documents may be inaccurate and/or incomprehensive in handling the various topics.  

On the other hand, Query Suggestion (QS), a query-creation interactive tool provided by 

many popular web search engines, such as Google, Yahoo!, and Bing, facilitates the web search 

by recommending concise queries that improves the precision and recall of the search engine 

[Vectomova 06]. Any search conducted by Q-WISE users is supported by its QS module which 

provides a guide to the users for formulating/completing a keyword query Q using suggested 

keywords (extracted from previous users‟ queries) as potential keywords in Q. 

To determine the effectiveness and efficiency of our query-based web informative 

summarization engine, we have conducted two different performance evaluations. We first 

evaluate the effectiveness of Q-WISE‟s clustering algorithm using three well-known datasets and 

compare it to other state-of-the-art clustering approaches. We also evaluate the quality of Q-

WISE-generated summaries using three DUC datasets and compare Q-WISE-generated 

summaries against those created by thirty other state-of-the-art (query-based) multi-document 
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summarization tools. Moreover, we compare Q-WISE and Google in terms of the time required 

to locate desired information using the corresponding system. Furthermore, we conduct several 

controlled experiments to analyze (i) the query suggestions recommended by Q-WISE in 

response to a user query, (ii) the quality of Q-WISE-created cluster labels, and (iii) the quality of 

a Q-WISE-generated summary in terms of grammar, anti-redundancy, referential clarity, 

coverage, and structure and coherence.  

Experimental results show that Q-WISE is highly effective and efficient in generating a 

concise and comprehensive summary of the documents retrieved in response to a Q-WISE user‟s 

query in each cluster and is ranked among the highest in its accuracy in multi-document 

summarization. The results also show that Q-WISE‟s clustering approach achieves an accuracy 

in the ninetieth percentile. Moreover, the entire process from query submission till summary 

generation takes less than four seconds on average. Experiments conducted on the QS module of 

Q-WISE show that it is comparable to Google, Yahoo!, and Bing in terms of time required to 

generate recommended query suggestions. In addition, useful query suggestions, as determined 

by the controlled experiments, are ranked higher by Q-WISE than by Yahoo! and Bing. 

Q-WISE is a contribution to the web and information retrieval community, since it (i) 

creates summaries, one for each potential topic derived from a user query, that is missing in a 

traditional web search engine, (ii) provides the user with an unbiased information source on a 

particular topic, since the creation of a summary is fully automated, without any editorial touch 

or subjective human intervention, (iii) enhances web searches by eliminating redundant retrieved 

information and helping the user locate desired information in time comparable to commercial 

web search engines, and (iv) establishes a new source for answering questions, since a summary, 
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which contains the most significant information from different documents, is likely to contain the 

answer to a user‟s question. 

The remaining chapters in this thesis are organized as follows. In Chapter 2, we discuss 

works related to query suggestion, clustering, and multi-document summarization. In Chapter 3, 

we describe in detail the design of the query suggestion, clustering, and summarization modules 

of Q-WISE. In Chapter 4, we present the experimental results, which verify the effectiveness 

and/or efficiency of Q-WISE-generated query suggestions, cluster labels, clusters of retrieved 

documents on the same topic, and summaries of document clusters. In Chapter 5, we give a 

conclusion and include directions for future work. 
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Chapter 2 

Related work 

Q-WISE clusters and summarizes clustered documents retrieved by existing web search engines 

for a query constructed by its user with or without using its query suggestion tool. In this section, 

we discuss existing work related to query suggestion (in Section 2.1), clustering (in Section 2.2), 

and summarization (in Section 2.3). 

2.1 Query suggestion 

Recent studies on query suggestion focus on combining co-occurrence of keywords and a 

handcrafted thesaurus. Cao et al. [Cao 05] develop a language model that captures word 

relationships by utilizing WordNet, which is a hand-crafted thesaurus, and word co-occurrence 

computed using co-occurrence samples. Even though Liu et al. [Liu 04] achieve an improved 

performance on query suggestion using WordNet, words and their measures in WordNet are 

subjective and, unlike user query logs, do not capture (i) relationships among keywords from the 

user‟s perspective and (ii) updated keyword relationships through time. Ruch et al. [Ruch 06] 

present an argumentative feedback approach in which suggested query terms are selected from 

sentences classified into one of the four disjunct argumentative categories that have been 

regularly observed in scientific reports. Due to the increased time complexity of the approach in 

[Ruch 06] and being tailored for scientific reports, the feedback strategy is not scalable to the 

Web.  

Cao et al. [Cao 08] introduce a query suggestion approach based on the contexts of 

queries recently issued by a user. Context-based query suggestion, however, requires very large 

query logs, since keywords suggested for a user query must appear in a list of related queries 

varying in size. Boldi et al. [Boldi 08] propose the Query Flow Graph (QFG), a directed graph in 
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which nodes are queries and any edge from node    to    indicates the probability of    being a 

suggestion for   . The authors of [Boldi 09, Bonchi 09] utilize a QFG for creating suggested 

queries using a random walk with restart model. Baraglia et al. [Baraglia 10] modify QFG to 

allow graphs to be updated to enhance their efficiency. These log-based methods [Boldi 08, 

Boldi 09, Bonchi 09] are adequate for queries that are created frequently, since accurate statistics 

are available on these queries. The statistics for infrequent queries, however, are based on only a 

few instances, which can lead to poor suggestions. Moreover, log-based methods rely on training 

to compute the edge weights, which is not required by Q-WISE. 

Widely-used web search engines, such as Google, Yahoo!, and Bing, assist users with 

query suggestion. We have observed that (i) Google has the fastest query suggestion module and 

(ii) suggested keywords for a user‟s query that are recommended by existing web search engines 

do not seem to differ significantly from one to the other. The query suggestion module of Q-

WISE is comparable to Google‟s in terms of computational time and the usefulness of its 

suggested queries. 

2.2 Clustering 

Clustering of web search results was first introduced in the Scatter-Gather system [Hearst 96]. 

Hereafter, a variety of clustering paradigms have been proposed, which include the singular 

value decomposition [Osinski 06], concept lattices [Chen 10], spectral clustering [Cheng 05], 

and graph theory [Xide 10]. Suffix Tree Clustering (SFC) [Crabtree 05, Ruixu 08], which uses 

recurring phrases to determine the similarity of web documents for clustering purpose, was later 

enhanced by [Chim 08], who minimize the size of a suffix tree. SnakeT [Ferragina 08] also uses 

an approach similar to the frequent phrases (known as frequent itemset) to extract meaningful 

labels and builds the cluster labels using a bottom-up hierarchy construction process. The 
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approaches presented in [Crabtree 05, Ferragina 08, Ruixu 08] perform clustering on web search 

results using the entire retrieved documents. Web search results, however, contain non-relevant 

terms in their navigational aids, such as keywords in advertisements and links to other pages, 

which could yield unreliable similarity measures of documents. Q-WISE uses the titles and 

snippets of documents retrieved by web search engines in clustering instead, which avoid non-

relevant terms found in documents. In addition, cluster labels created by Q-WISE are generated 

using suffix arrays, which provide a space-conservative substitute to suffix trees commonly used 

for clustering web search results. 

Besides phrase matching, graph-based and graph-partitioning methods are also available 

for clustering similar documents. Xide et al. [Xide 10] expand the set of retrieved snippets by 

including all the in- and out-linking pages to improve clustering precision. Since web search 

engines do not provide cheap access to the web graph, the link-retrieval efficiency is an issue. 

Microsoft [Zeng 04] develops a system that extracts (contiguous) sentences of variable length via 

regression. Regression, however, requires a training phase, which is non-feasible to apply to the 

heterogeneous web. In the context of Q-WISE, no training is required and clustering is done on-

the-fly. 

Kang and Kim [14] solve the ambiguity of short user queries by classifying queries for 

web document retrieval into one of three types of tasks: topic relevance task, homepage finding 

task, or a service finding task. Depending on the task, a different information emphasis is 

presented to the user. Although their method is successful in identifying whether a user query is 

referencing a service, a website, or a general topic, it fails to identify multiple interpretations 

and/or subtopics of a given topic query, which is still a main issue when dealing with ambiguous 

short queries.  
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2.3 Document summarization 

Summarization methods can be classified into abstractive summarization (i.e., rewriting the 

summary, which usually requires information fusion) and extractive summarization (i.e., 

extracting keywords or sentences from documents to create a summary), and Q-WISE adopts the 

extractive summarization approach. The centroid-based (i.e., sentence-scoring and -ranking) 

method [Radev 04] is one of the most popular extractive summarization methods due to its 

simplicity and effectiveness. MEAD (www.summarization.com/mead) is centroid-based and 

scores sentences using sentence-level and inter-sentence features, such as TF/IDF. NeATS [Lin 

02] is a multi-document summarizer based on SUMMARIST (http://128.9.208.230/must/), a 

single-document summarizer. MEAD and NeATS consider the sentence space but ignore the 

document-side knowledge, i.e., topics embedded in the documents. Sentence position, term 

frequency, topic signature, and term clustering have also been considered for selecting important 

content from documents for summarization purpose. In the context of Q-WISE, topics of 

documents are analyzed for creating a summary. 

The authors of [Bhandari 08, Hennig 09] score sentences based on the representation of 

each sentence in the latent topic space provided by a trained Probabilistic Latent Semantic 

Analysis (PLSA) model. The authors pick the topics of the set of documents S to be summarized 

with the highest posterior probabilities and select sentences from S with the highest likelihood 

within a single topic to create a summary. Arora et al. [Arora 08] employ Latent Dirichlet 

Allocation to create multi-document summaries by selecting sentences from the topic with the 

largest likelihood. As compared with the summarization approach of Q-WISE, the systems 

mentioned above do not perform any redundancy checking and do not achieve high coverage, 

since they focus on sentences addressing the same topic. 
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Graph-based extractive summarization [Erkan 04, Mihalcea 04, Lin 09] uses weights of 

edges between sentences (represented as nodes) to capture their similarity. The PageRank 

algorithm [Altman 05], which is graph-based, determines the sentences that are the most salient 

in a collection of documents and closest to a given topic. Although effective in capturing the 

significant sentences in a document, graph-based methods do not account for multiple topics 

within a document. Leskovec et al. [Leskovec 04], who construct a document graph using 

subject-verb-object triples, semantic normalization, and co-reference resolution, consider node 

degree, PageRank, and Hubs to generate statistics for the nodes, which represent sentences, as 

attribute values in a machine learning algorithm to rank the sentences. Amini and Usunier 

[Amini 2009] present a transductive approach that learns the ranking function over sentences in 

retrieved documents with only a few labeled instances. Their approach outperforms classification 

models in sentence ranking. In the context of Q-WISE, no labeled instances or human-produced 

summaries are required, since no training is involved in its summarization, which minimizes the 

overhead and avoids the system scalability problem. 
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Chapter 3  

Project description 

During the process of generating query-based multi-document summaries, Q-WISE (i) assists the 

user in creating a query Q using a query suggestion dialog box, (ii) gathers the top 33 documents 

retrieved by each of the three major web search engines, Google, Yahoo, and Bing, in response 

to Q, since a collection of a hundred documents is an ideal set for generating good clusters and 

their corresponding summaries [Dunlavy 07], (iii) clusters the retrieved documents and assigns 

meaningful labels to the clusters, (iv) ranks the sentences in each cluster C, (v) groups the 

sentences in C using the Hierarchical Agglomerative Clustering (HAC) approach and the word-

correlation matrix [Koberstein 06] as the similarity measure for HAC
2
, and (vi) selects the highly 

ranked sentences that are distinct in content from the sentence clusters created in Step (v). 

Detailed explanation on each step is given below. 

3.1 Overall view of the system 

Since Q-WISE itself is not a search engine, the first step involves retrieving documents from 

major selected search engines in response to the input query and preprocessing these documents. 

Hereafter, Q-WISE produces phrases (labels) that capture the different (sub)topics in retrieved 

documents. The documents are then assigned to their corresponding topics identified by the 

corresponding labels. Finally, Q-WISE generates a short summary for each of the produced 

clusters. 

The process of generating clusters and their corresponding summaries by Q-WISE can be 

decomposed into the following processing steps (as shown in Figure 1): (i) document retrieval, 

(ii) choosing cluster labels, (iii) ranking cluster labels, (iv) document clustering, (v) 

                                                      
2
 At the document clustering phase, documents are clustered according to their topics, whereas at the 

sentence clustering phase, sentences are clustered based on the subtopics of the documents in a cluster. 
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preprocessing of retrieved documents, (vi) co-reference resolution, (vii) sentence ranking, (viii) 

adding the temporal dimension, (ix) solving anti-redundancy and coverage, and (x) summary 

generation. Moreover, prior to these steps, Q-WISE helps the user formulate a query using a 

query suggestion module. 

 

Figure 1. An overview of the process of Q-WISE  
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3.2 Query suggestion design 

Web search engine users often provide imprecise specifications of their information needs in 

keyword queries, either because they are in a hurry, do not understand the search process well, or 

use inappropriate keywords. These scenarios might explain why web search engine users 

frequently create short queries
3
, which are incomplete or ambiguous. Hence, providing a user 

interface that can assist the users in constructing keyword queries that capture their information 

needs is an important design issue of web search, which can significantly enhance the precision 

of retrieved results as a side effect [Anick 03].  

One of the promising approaches for assisting the user in query construction is query 

suggestion. Query suggestion can be categorized into automatic and interactive. Interactive 

query suggestion displays keywords to be included in a query being created from where the user 

can choose one of the suggested queries or submit his own to the search engine. Automatic query 

suggestion, on the other hand, processes the user‟s query Q without providing suggested 

keywords to the user while the user is entering a query. Instead, Q is expanded internally using 

related keywords before it is processed by the search engine. Both approaches require a “query 

log” and a mechanism for deriving and ranking the suggested/expanded keywords. Q-WISE is 

equipped with an interactive query suggestion component, utilizing the AOL and Harold B. Lee 

Library query logs (discussed in details in Section 3.2.1) and a feature-based algorithm (see 

details in Section 3.2.2) that incorporates a trie structure for deriving and ranking suggested 

query words (see Section 3.2.3). 

Major web search engines, such as Yahoo! and Google, offer query suggestion. However, 

their query suggestion mechanisms are based on morphological information of queries, i.e., co-

                                                      

3 The AOL query log shows that 84% of submitted queries are either a single-keyword or 2-keyword 

queries. 
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occurrence of a query word with other query words [Mei 08]. Although such query suggestion 

modules are useful in guiding the user through the process of constructing a query, occasionally, 

the suggested queries may not match the semantic of the query that the user intends to create. For 

example, an intended web search for “Harry Shum” would yield the suggested query “Harry 

Potter” after the first keyword has been entered, although the two are not related. Q-WISE only 

suggests query keywords if they are in the same query or the same AOL session within 10 

minutes, which has been proven to be a reliable strategy [Fonseca 05]. 

3.2.1 The AOL/HBLL query logs 

Q-WISE relies on the AOL and Harold B. Lee Library (HBLL) query logs to generate suggested 

queries. The logs of AOL (http://gregsadetsky.com/aol-data/) and HBLL (lib.byu.edu), 

respectively include queries created by millions of AOL users over a three months period 

between March 1 2006 and May 31 2006, and HBLL over two years between 2005 and 2007, 

and the AOL logs are available for public use. A query log includes a number of query sessions, 

each of which captures a period of sustained user activities on the corresponding search engine. 

Each AOL/HBLL session differs in length and includes a (i) user ID, (ii) the query text, (iii) date 

and time of search, and (iv) optionally clicked documents. (Figure 2 shows a query session from 

the AOL query log.) A user ID, which is an anonymous identifier of the user who performs the 

search, determines the boundary of each session (as each user ID is associated with one session), 

the query text are the words in a user query and multiple queries may be created under the same 

session, the date and time of search can be used to determine whether keywords in two or more 

queries created by the same user are within 10 minutes, the time period that dictates whether two 

queries should be treated as related, and clicked documents are retrieved documents that the user 

has clicked on and are represented and ranked by their titles by the corresponding search engine. 
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Words in queries and/or documents are either stopwords or non-stopwords. Stopwords are 

commonly-occurring keywords, which include prepositions, articles, and pronouns, etc., which 

carry little meaning and often do not represent the content of a document. From now on, unless 

stated otherwise, whenever we refer to “(key)words”, we mean “non-stopwords”. 

The AOL query logs contain 50 million queries, while the HBLL contain 20 million 

queries. Out of these queries, about 30 million are unique and the rest are duplicates. The unique 

queries are examined and suggested keywords are extracted, whereas the duplicates are used as 

one of the features (discussed in Section 3.2.3) to determine the ranking of a suggested query. 

Figure 2. An AOL query session 

 

3.2.2 Processing the query logs 

Q-WISE parses the AOL and HBLL query logs and retains the keywords in query texts in a trie 

data structure [Knuth 73], which is done once, and the constructed trie is 51 megabyte in size. 

Using the trie, candidate keywords suggested for a user query can be found and ranked 

dynamically. To suggest potential query keywords, Q-WISE locates a trie branch b containing 

the (letters in the) keywords that have been entered during the query creation process and 

extracts the subtree rooted at the last node of b. Hereafter, the extracted suggestions are ranked 

using a set of features (as defined in Section 3.2.3).  

Q-WISE parses the query logs to extract query keywords while at the same time retains 

the information of related keywords in the same session, which were submitted by the same user 

within 10 minutes in the same session as discussed earlier. Hereafter, Q-WISE constructs the trie 

T using the extracted keywords in which each node x is labeled as a letter in an extracted 
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keyword in the given order, and each node in T is categorized as either “complete” or 

“incomplete”. A complete node is the last node of a path on T representing an (a sequence of, 

respectively) extracted query keyword (keywords, respectively). If node c is a complete node, 

then    (the subtree of T rooted at c) contains all the suggested keyword(s) represented by the 

nodes in the path(s) leading from and excluding c. The possible number of suggestions of a 

particular keyword K is n, where n is the number of nodes in the (subtrees rooted at)   , which is 

determined by the number of complete nodes in   , since K can be combined with any number of 

the n suggested keywords. An incomplete node, on the other hand, is the first or a subsequent 

node of a path on T, which are labeled by the letters in keywords. If node c is an incomplete 

node, then all subsequent nodes of c up till the first complete node, if it exists, are the possible 

suggestions of the letter(s) and/or keyword(s) represented by the nodes in the path leading to and 

including c. The number of possible suggestions for a particular node x is n, where n is the 

number of x‟s child nodes. 

Example. Figure 3 shows a sample trie of a few queries in the query log. When the user enters 

the letters “TI” in a query, all branches rooted at the child nodes of node I are retrieved, which 

include “Time”, “Ticket”, and “Tiger”, since node I is an incomplete node. If the user enters 

“TIG”, then the keyword “Tiger” is displayed. If the user has entered “Tiger”, the subtree rooted 

at node R, which is a complete node, is processed and the keywords “Airlines”, “OS”, “OS 

Mac”, “OS Buy”, and “Woods” are appended to “Tiger” and showed to the user. 
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Figure 3. A sample trie 

 

3.2.3 Ranking possible suggestions 

Since the number of potential suggested keywords can be large, Q-WISE ranks each suggested 

query keyword based on (i) the frequency of occurrence of the keywords in the query logs, (ii) 

their similarity with the user's submitted keywords based on the word-correlation factors
4
 

[Koberstein 06], and (iii) the number of times the initial user query is modified, within 10 

minutes, to the suggested query. The word-correlation factors, which are computed using the co-

occurrence of keywords in a huge set of Wikipedia documents, determine the suggested 

keywords which are similar to the keywords in a user‟s query.  

Given that SQ is a suggested query, Q-WISE computes a ranking score for SQ, denoted 

SuggRank(SQ), which reflects the degree of closeness of SQ (in terms of the information 

                                                      
4
 This measure cannot be employed until at least one keyword is entered by the user. 
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content) to the letters/keywords that have been entered while a user query is being constructed. 

SuggRank is defined as 

                       (  )  
     (  )     (    )     (    )

     (     (  )    (    )    (    ))
                           ( ) 

which is the Stanford Certainty Factor [Luger 05] on freq(SQ), WCF(SQ, Q), and Mod(SQ, Q), 

where Q are the letter(s)/keyword(s) the user has entered when SuggRank is being computed, 

freq(SQ) is the frequency of SQ in the query logs, WCF(SQ, Q) is computed as the sum of the 

word-correlation factors [Koberstein 06] between keywords in SQ and Q, and Mod(SQ, Q) is the 

number of times Q is modified to SQ in the same session in the query logs within 10-minutes. 

The Stanford Certainty Factor of a value V is a measure that integrates different assessments, i.e., 

scores or weights to yield an estimation of the strength of V. The Min function is used when all 

elements in the formula are required (AND), whereas the Max function is used when some of the 

elements are optional (OR). Since     (  )    (     )        (    ) are in different 

numerical scales, prior to computing the SuggRank of SQ, Q-WISE normalizes them using a 

logarithmic scale so that they are in the same range. 

Q-WISE selects the top 10 suggestions, which follows the 10 results per page approach 

employed by most major search engines, such as Google and Yahoo. Figure 4 shows a snapshot 

of Q-WISE‟s query suggestion on the query keyword “Tiger” in comparison with Google. Notice 

that in the figure Google‟s suggestions are mostly focused on “Tiger Woods”, the golf player, 

and there is no mention of any animal or airlines named „Tiger‟. This is likely because Google 

considers the number of times keywords in a query are submitted to the search engine as a 

feature in ranking, and “Tiger Woods” is a major topic in news. While the suggested query 

keywords are good for users using Google to look for Tiger Woods, it is not so for its users who 

are interested in an animal, an airline, or other information associated with the keyword „tiger‟. 
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Figure 4. Query suggestions generated by Q-WISE and Google based on the keyword “Tiger”, 

respectively  

3.3 Clustering 

According to [Selberg 99], the web search problem is defined as finding the set of documents on 

the Web relevant to a given user query. However, these days the problem is more complicated 

than simply finding relevant documents due to (i) information overload caused by the increasing 

information available on the Web, which has become a highly dynamic collection of documents 

and (ii) the large number of potential documents relevant to a user query. To solve the problem, 

existing web search engines, such as Google, Yahoo!, and Bing, adopt a ranking approach. In 

response to a user query, a search engine retrieves a ranked list of documents; the higher a 

retrieved document is on the list, the higher its relevance to the query is. Many algorithms for 

computing the degree of relevance of retrieved documents have been proposed [Brashler 09, Liu 

08, Shekhar 10]; however, these algorithms work well only with queries that are precise and 

narrow [Li 09, Osinski 06]. If the query is too general or broad, it is difficult, if not impossible, 

for a search engine to identify precisely the specific set of documents that satisfy the user‟s 

information needs. The side effect is that the user is required to sort through a list of documents 

to locate the relevant ones that (s)he is particularly interested in. Such a search has been 
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identified as a low precision search [Zamir 99]. The low precision search problem is caused by 

the fact that web search queries are typically short and often ambiguous [Shen 06]. As reported 

in [Weiss 01], which is also presented in a survey on iProspect (http://www.iprospect.com 

/premiumPDFs/keyword_length_study.pdf), as well as in our analysis of the queries in the 

AOL/HBLL query logs, majority of the queries submitted to web search engines are general 1-3 

words in length, which make up about 89% of the total queries in AOL and HBLL query logs. 

Consider as an example the results (included in the first page) retrieved by Google (on 

October 11, 2010) for the ambiguous query “jaguar", which include jaguar the car, the animal, 

the sports team, and the software (see Figure 5a). Even if “Jaguar” is revised into a more specific 

query such as “jaguar team picture", its results are still diverse in content, which include 

documents that address the Jacksonville football team, a boat race team, a car team, and a music 

team (see Figure 5b). Moreover, if a user is interested in downloading the jaguar software, a 

query such as “download jaguar" yields documents that discuss downloading jaguar brochure, 

jaguar screensaver, jaguar wallpaper, jaguar music, and jaguar software (see Figure 5c). Low 

precision searches are inevitable, and methods to enhance the searches are needed [Li 09]. 

 Many methods have been introduced in solving the low precision search problem, which 

include filtering [Bernard 08], relevance feedback [Jung 07], and a human-made directory 

[Yahoo!]. Filtering involves minimizing the number of retrieved documents by methods varying 

from applying simple pruning techniques to advanced Artificial Intelligence algorithms. 

Although filtering techniques limit the total number of retrieved results, they still cannot solve 

the low precision search problem. Relevance feedback refines a user‟s query by adding chosen 

keywords in retrieved documents labeled as relevant by the user. The feedback strategy, 

however, requires the user‟s involvement throughout the retrieval process and thus is not fully 
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automated. A human-made directory, which is implemented by Yahoo!, includes among ranked 

documents retrieved by the search engine other documents from a human-made directory that are 

relevant documents to the particular query labeled in advance and is constructed by a number of 

human experts. Since the Web is highly dynamic, many of the documents in the directory can 

easily become out-dated or may not be available anymore which could have been removed by 

their owners.  

Clustering, on the other hand, is a promising approach which identifies labels, groups, 

and assigns similar search results to different categories according to their subject areas. 

Generated clusters simplify the user‟s search process by allowing the user to quickly locate the 

specific subset of retrieved documents that satisfy the user‟s specific information need, which is 

a solution to the low precision search problem. Providing clustered search results would be much 

more appealing and useful to a user than a ranked list of retrieved documents that intermix with 

results based on different interpretations of a given query.  
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Figure 5. The first page of results generated by Google for the queries, “jaguar”, “jaguar team picture”, 

and “download jaguar”, respectively 

 

As the first step in the clustering process, Q-WISE submits the user‟s query to three major 

web search engines, Google, Yahoo!, and Bing, and retrieves the title, snippet (which is a short 

summary of the corresponding document), and URL of each one of the top 33 documents 

returned by each of the three search engines. During the clustering process, Q-WISE (i) generates 

a set of (cluster) labels, which are non-stopwords in the titles and snippets of retrieved 
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documents, (ii) selects (ranks, respectively) a subset of the labels generated in Step (i) using a set 

of features introduced in Section 3.3.1 (Section 3.3.2, respectively), (iii) applies the Vector Space 

Model (VSM
5
) to calculate the similarity between each label and each retrieved document (as 

presented in Section 3.3.3), and (iv) assigns the top-N (≥ 1) retrieved documents, ranked by VSM 

using the cosine similarity measure between documents and the labels, to their corresponding 

cluster identified by a label, where N is computed as the weight of the label divided by the sum 

of the weights of all the labels chosen for the clusters (as defined in Section 3.3.2). 

3.3.1 Choosing cluster labels 

In a typical text clustering algorithm, cluster labeling follows the document clustering step and 

the entire document text is used for clustering. Web-based clustering, on the other hand, is 

different as it involves different challenges. Web-based clustering must be (i) fast and document 

titles and snippets can be processed faster than using the entire documents in extracting and 

ranking cluster labels, (ii) flexible and fully automated as web contents change constantly and 

user feedback must be avoided, and (iii) user-oriented, i.e., eases the process of finding the 

required information by producing cluster labels that are meaningful and informative to the user, 

which is not a concern in document clustering due to the different type of end users. The users of 

traditional clustering tools are typically skilled professionals, whereas users of web-based 

clustering are often not experts, and thus are less tolerant to errors. Q-WISE first creates cluster 

labels prior to performing the clustering step using the titles and snippets of documents retrieved 

by Google, Yahoo!, and Bing. 

Candidate cluster labels are created by Q-WISE and extracted from the retrieved 

document titles and snippets by utilizing the suffix tree data structure. Labels are ranked 

                                                      
5
 VSM calculates the similarity between a query and each retrieved document using the well-known term 

frequency (TF) and inverse document frequency (IDF) measures. 
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according to a set of features which determines the score of each label that reflects its accuracy 

in capturing a particular subject area addressed in a subset of retrieved documents. Retrieved 

documents in each subset are assigned to their corresponding candidate label according to the 

score of the label (as presented in Section 3.3.2).  

A suffix tree is a data structure that retains all the n-grams in a list of words that yield a 

string, which in our case is a sentence in a document snippet or title. Strings can be inserted into 

the tree incrementally in time linear to the number of words in each string, which has a runtime 

of O(n), where n is the total number of words in the combined document snippets and titles in 

our case. Given a string S such that S is the concatenation of all the sentences in the snippets and 

titles of retrieved documents, a suffix tree of S is a rooted, directed tree in which the root node 

has a child node for each distinct word in S (see Figure 6a for an example), and edges between 

node A and another node B are combined if each node on the path P from A to B (including A) 

has only a single child and none of the labeled edges (excluding the edge leading to B) on P is 

the last word of any sentence in S (see Figure 6b). Each edge is labeled with a non-empty 

substring of S such that subsequent edges represent subsequent keywords in S, i.e., a suffix tree is 

a compact trie containing all the suffixes of S. The label (value) of a node N, which is used when 

traversing the suffix tree for processing, is the concatenation of the edge labels on the path from 

the root to N. Figure 6 shows a sample suffix tree of the strings “cat ate cheese”, “mouse ate 

cheese too”, and “cat ate mouse too” as shown in [Zamir 98]. 
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Figure 6. The initial and final suffix tree of the strings “cat ate cheese”, “mouse ate cheese too”, and “cat 

ate mouse too” 

A suffix tree is constructed each time a query is processed by Q-WISE, which can be used 

for identifying candidate cluster labels fast, such that each node on a suffix tree is a candidate 

cluster given that the node (cluster) has more than one document assigned to it as suggested by 
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[Gulla 07]. Figure 7 below shows an example of how candidate cluster labels are extracted from 

a suffix tree. 

Query: Tiger  

Document 1: Tiger OS reviews. Review center 

Document 2: Panthera tigris 

Document 3: Tiger reviews 

Document 4: View Panthera tigris images 

Suffix Tree: 

 

Candidate Clusters: Review, Tiger, Panthera tigris, tigris. 

  Figure 7. Candidate cluster labels generated for the query “Tiger” 

Since the number of extracted suffixes can be large and not all the suffixes capture the 

subject area shared by a subset of retrieved documents, selected (cluster) labels must satisfy the 

following constraints and are non-numerical keywords: 

1- Labels do not cross sentence boundaries, since sentence markers indicate a topical shift.  

2- Labels are complete which are not included as substrings in other labels. 

3- Labels do not begin or end with a stopword, since stripping leading and trailing 

stopwords from a phrase is likely to increase its readability [Zamir 99]. 

4- Labels do not end in the Saxon genitive form, which is a traditional term for the 

apostrophe-s. 
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3.3.2 Ranking cluster labels 

Selected cluster labels (as created in Section 3.3.1) might (i) differ in the number of documents 

assigned to the labels for which their contents are captured by the labels and (ii) still be 

ineffective compared with others in capturing a subject area of a subset of retrieved documents. 

Hence, Q-WISE ranks the selected cluster labels according to various features, such as frequency, 

stability, and significance of the selected labels, to ensure that chosen labels which capture the 

contents of a larger portion of retrieved documents compared to other chosen labels and are more 

informative than other chosen labels are ranked higher on the list and are assigned a larger 

number of documents subsequently. 

Let L be a cluster label and C be the set of retrieved documents. Cluster labels are ranked 

using the following measures: 

1- The number of Title Words (NTW) in L, which is the number of keywords in the titles of 

documents in C that are also in L. The more title keywords in L, the higher its ranking 

score of L is, since the title of a document D usually reflects the subject area of D. 

Snippets, on the other hand, are not considered in this measure, since they represent 

sentences extracted from D that usually may not reflect the topic of D [Osinski 06]. 

2- The frequency of Label (FoL) L, which is the frequency of occurrence of L in the titles 

and snippets of documents in C. The more frequently a label occurs in the titles and 

snippets of a subset of documents S in C, the more likely it represents the content of S 

[Osinski 06]. 

3- The label Stability of L, which measures the mutual information (dependence), denoted 

MI, of L [Zhang 01]. Dependency identifies cluster labels that characterize the contents of 

documents in one cluster in contrast to other clusters. The higher the MI of L is, the more 
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dependent L is as a cluster label. Assume that L = “       ”, where    (1 ≤ i ≤ n) is a 

(stop)word in L, the stability of L is defined in [Zhang 01] as 

                                               ( )  
 ( )

 (  )    (  )    ( )
,                                                (2) 

where             ,           , and  (  )  (  )      ( ) are the frequencies 

of occurrence of            , respectively in the titles and snippets of documents in C. 

4- The label Significance (LS) of L, which indicates the significant factor of a cluster label 

[Zhang 01]. The longer a cluster label is, the higher its significance is, since longer 

cluster lables are more informative of the subject area covered in the corresponding 

subset of documents. The significance of L is defined in [Zhang 01] as  

                                                    ( )    ( )    (| |)                                                  (3) 

where f(L) is the frequency of occurrence of L in the titles and snippets of documents in 

C, |L| is the number of (stop)words of L, g(x) is a function such that g(1) = 0, g(x) =      

x, when 2 ≤ x ≤ 8, and g(x) = 3, when x > 8. 

Q-WISE computes a ranking score for L, denoted LabWeight(L), which reflects the 

significance of L in capturing the contents of documents in C. LabWeight is defined as 

                              ( )  
    ( )     ( )    ( )    ( )

     (   ( )    ( )   ( )   ( ))
                                 ( )  

which is the Stanford Certainty Factor [Luger 05] on NTW(L), FoL(L), MI(L), and LS(L). Since 

   ( )    ( )   ( )       ( ) are in different numerical scales, prior to computing the 

LabWeight of L, Q-WISE normalizes them using a logarithmic scale so that they are in the same 

range. Figure 8 shows a set of ranked labels created from the retrieved documents in response to 

the query “Eagle”. 
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3.3.3 Document clustering 

The Vector Space Model (VSM), which compares textual data by using algebraic vectors in a 

multidimensional space, is adopted by Q-WISE for assigning retrieved documents to their 

clusters identified by the corresponding labels. The linear algebra operations calculate the 

similarities among a given set of documents using VSM, which are effective and efficient. Q-

WISE considers the retrieved document title, document snippet, and the cluster labels, such that 

each cluster label is treated as a separate document during the comparison process, and the 

degree of similarity between each label and the retrieved set of documents is computed. Every 

unique keyword in the retrieved documents to be analyzed yields a dimension in the VSM, and 

each document is represented as a vector spanning all these dimensions. For example, if vector v 

represents document j in a k-dimensional space, then component t of vector v, where t   1 … k, 

denotes the degree of similarity between document j and t in (the document representing) the 

label. The degree of similarity between retrieved documents and labels can be captured in a k × d 

matrix, known as the term-document matrix, where k is the number of unique terms in all the 

documents and d is the number of documents in the collection of 99 retrieved documents plus the 

chosen cluster labels. Element     of the term-document matrix is the similarity value between 

term i of the label and document j of the set of retrieved documents. There are many methods for 

calculating    , and the most common one, which is also adopted by Q-WISE, is the cosine 

similarity measure between any two documents using the vector dot product formula. 

After selecting and ranking cluster labels, Q-WISE assigns a number of documents N to 

each cluster label, which yields a list of ranked documents assigned to each cluster. Q-WISE 

assigns the top-N (≥ 1) documents ranked by VSM to each cluster label L, where N is computed 
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as the weight, i.e., LabWeight, of L divided by the sum of the weights, i.e., LabWeights, of all the 

chosen labels rounded to the nearest whole number, as shown in equation 5.  

                                                           (
      ( )

∑       ( )  
 

)                                                      ( )     

This method proves to be effective, since it (i) allows overlapping of documents between 

clusters, which is sometimes required as some documents may include contents of multiple 

subject areas of documents in different clusters, (ii) runs fast which takes less than 2 seconds on 

99 documents and yields a number of labels between 10 to 20, and (iii) assigns highly ranked 

cluster labels more documents, since the distribution of different subject areas presented in the 

retrieved set of documents is not uniform, and highly ranked labels capture the subject areas of 

more documents than others.   

3.3.4 User interface 

Q-WISE‟s interface is very simple, following the design of the user interface of popular web 

search engines being used these days. The interface consists of a query text box and a search 

button. After a search is processed by Q-WISE, a list of ranked clusters for the query is 

displayed. Clicking on a cluster label L shows the titles and snippets of the documents contained 

in the cluster of L, along with the summary of the documents in the cluster (discussed in Section 

3.4), if desired. Figure 8 shows a sample list of ranked clusters for the query “Eagle” and Figure 

13 shows the generated summary for the label “Eagle Scout”. 
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Figure 8. Query “Eagle” run through Q-WISE 

3.4 Summarization 

According to the report prepared by ComScore (http://searchenginewatch.com/), 213 million 

web queries were submitted on a daily basis in March 2006 in the U.S.A alone, which yielded 

148,000 searches per minute. Existing web search engines, as stated earlier, retrieve a ranked list 

of topically-related documents in response to a keyword query. Many of these documents, 

however, include overlapped information and some of them may not meet the user‟s information 

need. To minimize the user‟s time and efforts in scanning through the contents of retrieved 

documents to determine the useful ones, existing web search engines display each retrieved 

document D with a snippet, which serves as a short summary of D. These snippets, however, are 

not always useful to the user, since they (i) often include very similar information and (ii) are 

created using phrases in retrieved documents solely based on the number of query keywords 

appeared in them, which may not capture the main content of the corresponding documents. 
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Consider the top-5 results retrieved by Google (on October 19, 2010) for the query “First 

walk on the moon", as shown in Figure 9. The titles and snippets of these results show the same 

information, i.e., Neil Armstrong was the first man to walk on the moon and the date of that 

incident. If the user is interested in more/other (specific) information about the first walk on the 

moon, such as the shuttle used in space, astronauts that accompanied Neil Armstrong, length of 

the journey, etc., the user must scan through the retrieved documents one by one, since there is 

no clue (indication) as to which retrieved documents might include the additional information. 

Even though the snippets of the top-5 results retrieved by Google for the query “Health problems 

related to computers”, as shown in Figure 10, convey different information, none of the snippets 

provide information addressing the “problems” specified in the query, since the retrieved 

snippets merely contain query keywords, i.e., “problems”, “health”, “computers”, and “related”, 

without including intuitive, useful information discussing the “real problems” in a substantial 

way. Moreover, the snippets do not reflect which documents contain more specific information 

about the “problems”, i.e., if the user wants to see the “problems” but is also interested in 

possible solutions, he/she has no clue as to which of these documents contain that information. 

 

Figure 9. The top-5 results retrieved by Google (on October 19, 2010) for the query “First walk on the 

moon” 
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Figure 10. The top-5 results generated by Google (on October 19, 2010) for the query “Health problems 

related to computers” 

Summarization is a promising approach in dealing with the issue of ineffective snippets 

and information overload, since it provides a summary (abstract) that includes the key concepts 

covered in a (set of) document(s). An ideal text summary of a (given set of) document(s) S (i) 

includes unique but excludes extraneous, redundant information presented in (various documents 

in) S, (ii) must be coherent and comprehensible, which can be achieved using natural language 

processing to handle issues such as co-reference and the temporal dimension (to be introduced in 

Sections 3.4.2 and 3.4.5, respectively), and (iii) must be of appropriate length, since a very brief 

summary is likely to exclude some important information in S and a very detailed one is likely to 

repeat the same information in S. Figures 11 and 12 show the summaries generated by Q-WISE 

for the top-5 results retrieved by Google for the queries “First walk on the moon” and “Health 

problems related to computers”, respectively. Q-WISE includes five sentences in each summary, 

which are compatible in size with the top-5 snippets retrieved by Google with one sentence for 
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each retrieved document (i.e., 5 sentences in total). The summary for “First walk on the moon” 

includes the information provided in the snippets, in addition to other relevant information, such 

as the space shuttle, the time of arrival, the astronauts that accompanied Neil Armstrong, etc., 

excluded in the snippets of the top-5 results for the query. The summary for “Health problems 

related to computers” contains information relevant to the query, such as symptoms, corrective 

measures, and the actual problems, which are missing in the corresponding set of snippets. 

Neil Armstrong was the first to step onto the Moon's surface, in the Sea of Tranquility, at 

0256 GMT, nearly 20 minutes after first opening the hatch on the Eagle landing craft.  

Neil Armstrong and Edwin Aldrin spent a total of 21 hours on the Moon, two-and-a-half of 

them outside the landing module.  

The astronauts also unveiled a plaque bearing President Nixon's signature and an inscription 

reading: "Here men from the planet Earth first set foot upon the Moon July 1969 AD.  

As he put his left foot down first Armstrong declared: "That's one small step for man, one 

giant leap for mankind". 

Neil Armstrong was joined by colleague Edwin "Buzz" Aldrin at 0315 GMT and the two 

collected data and performed various exercises - including jumping across the landscape - 

before planting the Stars and Stripes flag at 0341 GMT.  

Figure 11. The summary generated by Q-WISE for the query “First walk on the moon” 

 

Working with computers can lead to various health-related problems, such as eye trouble, 

headache, pain in the neck and shoulders, arms, or hands. 

Wear splints while you work to keep your wrists from bending too high or low, and use a 

keyboard tray so the keyboard and mouse are below your elbows and your wrists are level. 

Corrective Measures: The correct thing to do is to place the computer table between lights 

and not directly under them. 

Symptoms include pain, fatigue, irritation of muscles and tendons, a tingling or numb 

feeling, or loss of strength. 

Causes: Wrong type of chair or desk, Right chair an desk but wrong posture, Sitting on the 

edge of the chair, sitting with all the weight on one buttock by sitting cross legged.  

           Figure 12. The summary generated by Q-WISE for the query “Health problems related to 

computers” 
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Multi-document summarization of a set of documents S can be created by concatenating 

the summary of each document in S. This approach, however, can yield a summary with poor 

quality. For example, the same referencing expression “the president” in two different documents 

may not necessarily refer to the same person. Moreover, useful pieces of information could be 

ignored due to the temporal ordering of the documents when newer information override older 

ones in the summary. The following six design issues have been addressed and emphasized in 

the design of a (query-based) multi-document summarization approach as compared to the 

design of a single-document summarization method [Ou 07]. 

1. The redundant information in a set of topically-related articles is much higher than its 

counterpart in an article, since an article usually discusses the main idea and other related 

information. A multi-document summarization approach is expected to eliminate 

sentences that convey the same piece of information. 

2. Information presented in a set of articles may invoke a temporal dimension, which is 

typical in a stream of news reports on an unfolding event, and the most-recent developed 

information often override earlier ones. A multi-document summarization approach 

orders sentences in a given set of documents partially based on their publication dates. 

3. The length of a summary is typically smaller for a collection of dozens/hundreds of 

topically-related documents than for concatenated single-document summaries, one for 

each of the documents in the same collection. The Document Understanding Conference 

(DUC) suggests a summary length of 250 words for a collection of documents, which is 

adopted by Q-WISE.  Given such a small compression, users should be given the option 

to trace the original documents using their corresponding sentences in the summary for 

detailed information. 
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4. The co-reference problem (presented in Section 4.3.2) presents an even greater challenge 

for multi-document summarization than for single-document summarization for two main 

reasons. First, as stated earlier, a summarization approach must identify whether two 

references in two different sentences address the same object, which is a more 

complicated issue when the sentences come from different documents, since an object 

might be identified in various ways in different documents. Second, a multi-document 

summary may contain sentences extracted from several documents, which may include a 

pronoun without its preceding referent. If the referent is not identified, it is likely to (i) 

leave the reader with insufficient information to understand the summary, and/or (ii) give 

the reader a false indication of what the referent is. 

5. Achieving good coverage in multi-document summarization is difficult, since topically-

related articles from where information are selected for creating a summary can include a 

variety of “subtopics‟, whereas a single document tends to focus on a few subtopics.  

6. User interface must be simple, easy to use, and allow the user to view the context of the 

original document by clicking the corresponding sentence in the summary. 

A multi-document summary has several advantages over single-document summaries, 

since the former (i) provides an overview of various subtopics, if they exist, of a particular 

subject, (ii) gives the user more information about the subject while eliminating common 

information across many documents, and (iii) identifies a subject or research topic that evolves 

over time. 

Two of the commonly-used, multi-document summarization methods are extractive and 

abstractive summarization. Extractive summarization assigns saliency scores to units, such as 

sentences or paragraphs in a document, such that each assigned score reflects the significance of 
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the corresponding unit in capturing key concepts presented in the set of documents SD to be 

summarized and units with the highest scores are extracted, whereas abstractive summarization, 

which requires information fusion and sentence reformulation, rewrites sentences SD to be 

included in the summary so that they are readable and grammatically correct. Q-WISE adopts the 

extractive summarization strategy at the sentence level. 

Q-WISE creates a summary for each cluster C of retrieved documents by (i) downloading 

and preprocessing the 99 documents retrieved from Google, Yahoo!, and Bing (discussed in 

Section 3.4.1), (ii) identifying and associating all (pro)nouns in the retrieved documents with 

their referents (discussed in Section 3.4.2), (iii) assigning each sentence S in documents in C a 

score, denoted RS, which reflects the relative significance of S in capturing the key concepts 

covered in documents in C according to the set of features defined in Section 3.4.3, (iv) choosing 

the top-M (≥ 1) sentences (based on their RS scores) from the documents in C, such that 

∑              
    and ∑            

   , where    is the length in words of sentence i in C, (v) 

clustering the M sentences using the HAC algorithm based on the word-correlation factors 

[Kobersten 06] (as discussed in Section 3.4.4), (vi) selecting the top-N sentences (based on their 

RS scores) from each sentence cluster created in Step (v), such that ∑          
    and 

∑        
   , and, if desired, (vii) re-weighting the selected sentences based on their temporal 

dimensions to capture the flow of events (as discussed in Section 3.4.5). If the number of 

sentences N to be selected for a summary is less than the number of created sentence clusters of 

C, then the N sentences (one from each of the N clusters) with the highest RS score are chosen.  

We use 9 x 250 in our equation, since Schlesinger et al. [Schlesinger 08] claim that 9 x W 

words are required to generate a summary Sum, where W is the number of words in Sum, since 9 
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x W provides sufficient, distinct contents for summarization. As discussed earlier, a Q-WISE-

generated summary is about 250 words.  

3.4.1 Document preprocessing 

The set of 99 documents retrieved from Google, Yahoo!, and Bing, are first downloaded and 

preprocessed, where each retrieved document is in HTML format. We consider HTML pages 

only for creating multi-document summaries, since (i) other formats are very complex to process 

and require their own parsers and additional overhead time and (ii) over 99% of the documents 

retrieved by Google, Yahoo!, and Bing are HTML documents. Each document D is then parsed 

to remove surplus data, which include links to other documents, advertisements, and non-textual 

data, such as images and videos, and retain textual information, i.e., title, text, date, and the URL 

of D, which are converted into uniform XML format for easy data lookup. Text in each 

document is segmented into sentences using a short list of end-of-sentence punctuation marks, 

such as periods, question marks, and exclamation points. The exclamation point and question 

mark are less ambiguous as end-of-sentence indicators. However, since a period is not 

exclusively used to indicate sentence breaks, which may indicate an abbreviation, a decimal 

point, parts of an e-mail address, etc., a list of common abbreviations, such as “i.e.”, “u.s.”, and 

“e.g.”, along with regular expressions for detecting decimals, email addresses, and ellipse, are 

used to ensure reliable identification of sentence boundaries. Hereafter, each sentence is parsed 

into a sequence of word tokens using the Conexor Parser (http://www.connexor.eu/technology/ 

machinese/demo/). For each word token, its Document_ID, Sentence_ID, word form (the real 

form used in the text), stem (generated using the Porter stemming algorithm [Croft 10]), and 

creation date of the corresponding document are stored. The Document and Sentence IDs 

identify the document from where the sentences are extracted, the stem of a word is used in 



www.manaraa.com

39 

 

different sentence and document similarity formulas, and the date is used for re-weighting the 

sentences in a summary based on their temporal dimension. 

3.4.2 Solving the co-reference resolution problem 

Co-reference resolution refers to the problem of determining which (common) (pro)noun phrases 

refer to which real-world entity as given in a document. For example, given a sentence S in 

[Watson 10] “Queen Elizabeth set about transforming her husband, King George VI, into a 

viable monarch. Lionel Logue, a renowned speech therapist, was summoned to help the King 

overcome his speech impediment”, a co-reference resolution system partitions S such that all 

(pro)noun phrases in sentences referring to the same real-world entity are grouped together. 

Hence, in processing S, a co-reference resolution system yields three groups <Queen Elizabeth, 

her>, <husband, King George VI, the King, his>, and <Lionel Logue, therapist>. In 

summarization, it is required to replace a (pro)noun in a sentence with its referencing entity, 

since sentences in the summary can lose their original orders and yield a false indication of what 

the (pro)noun refers to. Q-WISE adopts an open source package for performing co-reference 

resolution [Watson 10] in solving the co-reference problem.  

3.4.3 Ranking sentences in clusters 

Each sentence S in a document cluster C is assigned a weight, denoted RS, which indicates its 

relative significance in capturing the contents of the documents in C. To compute the weight of 

each sentence, Q-WISE utilizes the following features: 

1- Title Frequency (TiF) is the number of words in S that appear in the cluster label of C. 

2- As the summary of the documents in C reflects the content of C, it should contain 

sentences that include frequently-occurred, significant words in C. We define the 

significance factor [Luhn 58], denoted SF, of S based on significant words as 
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where |S| is the number of words in S and |significant-words| is the number of significant 

words in S. A word w in C is significant in C if  
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         (     )                  

                         ( ) 

where      is the frequency of occurrence of w in C, Z is the number of sentences in C, 

and 25 and 40 are the low- and high-frequency cutoff values, respectively. 

3- The similarity score of a sentence    in C, denoted Sim(  ), indicates the relative degree 

of    in capturing the overall semantic content of C. Q-WISE computes Sim(  ) using (i) 

the word-correlation factors (wcf) [Koberstein 06] of every word in    and words in each 

remaining sentence    in C and (ii) the Odds ratio = 
 

   
 [Judea 88]. 
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where |C| is the number of sentences in C, n (m, respectively) is the number of words in 

   (  , respectively), and    (  , respectively) is a word in    (  , respectively). 

4- Label-Sentence Similarity (LSS) measures the similarity between S in C and the cluster 

label L of C, and is computed using the VSM as follows:  

                                ( )      (   )  
∑            

 
   

√∑     
   

      √∑     
   

   

                                 ( ) 

where      =   (   )      (i),      =   (   )      (i),      (    , respectively) is the 

weight of a word i in S (L, respectively), and N is the total number of distinct keywords in 
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C. The higher the LSS value of S, the higher is the degree of S in reflecting the content of 

C, since L captures the contents of documents in C. 

5- Named Entity (NE) is the name-entity weight of S in C, which is defined as  

                                                        ( )  
∑  (  )

| |
   

 ( )
                                                             (  ) 

where a named entity is an atomic element, which can be the name of a person, an 

organization, a location, etc., |E| is the number of named entities in S,  (  )  is the 

frequency of occurrence of entity    in C, and f(E) is the sum of the frequency of 

occurrence of all named entities in C. A sentence that contains a named entity usually 

captures more useful information in a document than sentences that do not contain any 

[Osinski 06]. 

6- A penalty is given to each short sentence (with less than 15 words) or long sentence (with 

more than 30 words) [Schiffman 02], since short sentences often require some 

introduction or reference resolution, or some kind of interjection, whereas long sentences 

often cover multiple concepts that can be found elsewhere in single sentences in C. Q-

WISE assigns a Sentence Length (SL) value of -1 to S if |S| < 15 or |S| > 30, where |S| is 

the number of (stop)words in S, and 0 otherwise. 

7- It has been shown that the first sentence of the first paragraph and the last sentence of the 

last paragraph contain the most important words (information) in a document [Baxendale 

58]. Hence, Q-WISE assigns a Sentence Position (SP) value of 1 to S, if S is the first 

sentence of the first paragraph or the last sentence of the last paragraph in any document 

in C. 

     Q-WISE computes a ranking score for S, denoted RS(S), which reflects the relative degree of 

significance of S in capturing the contents of the documents in C and is defined as 
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Equation 11 computes RS(S) using the Stanford Certainty Factor [Luger 05]. Since 

   ( )   ( )    ( )    ( )   ( )   ( )  and   ( ) are in different numerical scales, prior 

to computing RS, we normalize them using a logarithmic scale so that they are in the same range. 

3.4.4 Solving the anti-redundancy and coverage problems 

Before selecting sentences for creating the summary of a document cluster C, Q-WISE clusters 

the top-M (≥ 1) ranked sentences (based on their RS scores) in C, where M is nine times the 

length of the desired summary, as discussed earlier, using the Hierarchical Agglomerative 

Clustering (HAC) algorithm. The HAC algorithm initially assigns each sentence to a singleton 

cluster, and then repeatedly merges clusters until a specified termination criterion is satisfied 

[Manning 99]. Since the HAC algorithm relies on a similarity metric among sentences in any two 

clusters for merging clusters, Q-WISE uses the sentence-similarity measure (Sim), as defined in 

Equation 8, to compute the similarity among the sentences in two (intermediate) clusters. To 

determine the termination criterion for HAC, Q-WISE applies the algorithm in [Alguliev 08], 

which implements Neural Nets [Grossberg 88], to determine the optimal number of subtopics 

covered in a (set of) document(s), which dictates the ideal number of sentence clusters in C to be 

generated by HAC.  

Given that L is the desired length of a summary Sum, Q-WISE selects sentences from 

each sentence cluster CT created by HAC to be included in Sum such that (i) the first sentence S 

to be chosen from CT has the highest RS value in C and (ii) the selection stops when the length 

of selected sentences exceeds L and the length of the summary up till the second-to-last sentence 

is less than L. After the first round of selection, Q-WISE chooses the next sentence    from CT 

with the lowest similarity score, denoted LSS, relative to S, which is computed as the sum of the 
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word-correlation factors [Koberstein 06] between each word in    and S. By performing this 

clustering process, Q-WISE ensures that selected sentences are distinct in contents, which avoids 

redundancy and maximizes coverage in terms of the information included in the summary. 

3.4.5 Adding the temporal dimension 

The information captured in a set of documents on a particular topic might be dynamically 

changing over time, such as an incident in news. An updated document contains the most recent 

development (i.e., information) compared with its older editions. Q-WISE accounts for the 

temporal dimension in a set of documents by re-weighting each sentence based on its timestamp 

(the date when it was last updated). The RS weight of each sentence S is modified based on its 

temporal dimension weight, denoted TD(S), as defined below. 

                                                                ( )    ( )    ( )                                                            (  ) 

where S is a sentence in a document cluster C, TD(S) is a time-based weight of S. The earlier a 

document in C which include S is published, the smaller the TD(S) is. Since exponential average 

is extensively used in time-series prediction, Q-WISE uses the decay rate formula in computing 

TD(S), which decreases the sentence weight exponentially according to time [Yu 05]. 

                                                                 ( )           
   
                                                          (  ) 

where y is the current time (i.e., day, hour, and minute), t is the publication time
6
 of the 

document containing S, (y - t) is the time gap in hours, and DecayRate is a variable that is 

experimentally set to 0.5.  

We have chosen not to treat the temporal dimension as a feature to compute RS and 

include it as a separate weighting factor so that it is an option to be included (excluded, 

respectively) in determining the ranking of S in C. This option is appropriate, since a given set of 

                                                      
6 If a sentence contains a date, then it overrides the publication time of the document as it explicitly states 

the time of the information presented in the sentence. 



www.manaraa.com

44 

 

documents may not discuss events that override one another, i.e., old information are just as 

important as new ones. 

3.4.6 Samples of generated summaries 

Figure 13 shows the summary generated for the query “Eagle Scout”, which is created for the 

document cluster labeled “Eagle Scout” as shown in Figure 8. The summary (i) includes distinct 

sentences that present different information such that sentences with older dates are ranked 

towards the bottom, (ii) covers most subtopics associated with eagle scouts, which include 

badges, eagle scout ranks, age limit, service projects, and medals, (iii) does not include any 

sentences with unidentified (pro)nouns, and (iv) is of appropriate length, i.e., 256 words, as 

defined by DUC. 

Some Eagle Scouts have returned their badges to protest the BSA's discriminatory policies.  

Eagle Scout may be earned by a Boy Scout or Varsity Scout who has been a Life Scout for at 

least six months, earns a minimum of 21 merit badges, demonstrates Scout Spirit, and 

demonstrates leadership in the troop, team, crew or ship.  

Adult leaders who earned the rank of Eagle Scout as a youth may wear the square knot on 

their uniform above the left shirt pocket.   

Eldred was the first of three generations of Eagle Scouts; his son and grandson hold the rank 

as well.  

Any Venturer who achieved the First Class rank as a Boy Scout in a troop or Varsity Scout in 

a team may continue working for the Star, Life, and Eagle Scout ranks and Eagle Palms 

while registered as a Venturer up to his 18th birthday.  

In 1952, age limits were set so that adults over 18 years of age could no longer earn Eagle 

Scout and the service project requirement was slightly expanded to "do your best to help in 

your home, school, church or synagogue, and community."  

The design of the Eagle Scout medal had not been finalized by the National Council, so the 

medal was not awarded until Labor Day, September 2, 1912.  

The cloth badge was introduced for Eagle Scouts attending the 2nd World Scout Jamboree in 

Denmark in 1924 with a design based on the hat pin.  

Information needed to fill out the Eagle Scout Rank Award Application.  

Figure 13. A Summary generated by Q-WISE for the cluster (labeled) “Eagle Scout” 

 

http://en.wikipedia.org/wiki/Varsity_Scouting_%28Boy_Scouts_of_America%29
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Chapter 4  

Experimental results 

In this section, we assess the overall performance of Q-WISE. We first describe the datasets (in 

Section 4.1) used for the empirical study and detail the statistical approach (in Section 4.2) that 

determines the ideal number of appraisers and queries required for the evaluation of Q-WISE on 

its query suggestion module, the usefulness of its generated cluster labels, and the quality of its 

cluster summaries (in Section 4.3). The performance analysis, which is based on a number of 

evaluation measures (introduced in Section 4.4) and the assessment of the appraisers, addresses 

(i) the effectiveness of our trie approach in extracting useful keywords for query suggestion (in 

Section 4.5.1), (ii) the accuracy of the (ranking on) cluster labels created by Q-WISE in capturing 

the content of clustered documents (in Section 4.5.2), (iii) the efficiency and effectiveness of Q-

WISE‟s document clustering approach (in Section 4.5.3), and (iv) the ability of Q-WISE to 

generate a summary that achieves a high degree of coverage, coherence, anti-redundancy, 

temporal dimension, and grammatical correctness (in Section 4.5.4). We have also measured the 

query processing time of Q-WISE in clustering retrieved documents and generating summaries 

(in Section 4.5.5) and compared the anticipated time to locate desired information on Q-WISE 

and Google, respectively as compiled by Facebook users
7
 (in Section 4.5.6). 

4.1 The datasets 

In this section, we present the datasets used for (i) evaluating the effectiveness and efficiency of 

Q-WISE‟s clustering approach (in Section 4.1.1), and (ii) measuring the quality of Q-WISE-

created summaries, each of which captures a specific topic of a given query (in Section 4.1.2). 

 

                                                      
7 Facebook users who served as independent appraisers provided an objective and unbiased evaluation on 

items (i), (ii), and (iv) listed above. 
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4.1.1 Data for evaluating the clustering approach 

Results generated by a clustering algorithm are often evaluated against an “ideal” set of clusters. 

This distortion measure compares the difference between a set of generated clusters and a 

ground truth set, which is a reference set of clusters, on the same set of documents. We have 

evaluated the clustering results of Q-WISE using three datasets, denoted    ,    , and     as 

shown in Table 1, which are constructed from various data sources widely used for document 

clustering evaluation.     is the 20 NewsGroup (http://people.csail.mit.edu/jrennie/20News 

groups/) dataset (20NG), which consists of 19,997 articles retrieved from the Usenet newsgroup 

collection that are clustered into 20 different categories. DMOZ (www.dmoz.org), on the other 

hand, is the largest, most comprehensive human-edited directory of the Web, which organizes 

web pages into their corresponding categories. We randomly selected 20 topic categories from 

DMOZ and extracted a total of 20,000 documents (the same size as the 20NG dataset) from the 

categories to create the multi-topic dataset    . We chose another 20 categories from DMOZ 

along with a different set of 20,000 documents to obtain another dataset    . The categories and 

documents in the three datasets are disjoint. 

Dataset             

Number of articles (documents) 20,000 20,000 19,997 

Number of topics 20 20 20 

Data source DMOZ DMOZ  NewsGroup (20NG) 

Table 1. Datasets used for evaluating the effectiveness and efficiency of Q-WISE‟s clustering approach 

 

4.1.2 Data for evaluating the summarization approach 

Generic multi-document summarization analysis has been one of the fundamental tasks of DUC 

2005, DUC 2006, and DUC 2007, each of which is an open benchmark dataset created and 

archived by the Document Understanding Conference, DUC (nlpir.nist.gov/projects/duc/). We 

used all three datasets for evaluating Q-WISE-generated summaries. Table 2 shows the properties 
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of the three datasets, where TDT (http://projects.ldc.upenn.edu/TDT/) and AQUAINT 

(http://www.ldc.upenn.edu/Catalog/docs/LDC2002 T31/) are corpora from where the DUC 

datasets are extracted.  

Dataset DUC 2005 DUC 2006 DUC 2007 

Number of clusters 50 50 45 

Number of documents per cluster 32 25 25 

Data source TDT AQUAINT AQUAINT 

Table 2. DUC datasets used for evaluating the quality of Q-WISE-created summaries 

 

NIST assessors, who organized DUC and created each dataset as shown in Table 2, 

selected various topics and chose a set of web documents relevant to each topic. Given a DUC 

topic T and a collection of documents C relevant to T, a summarization approach to be evaluated 

is expected to create a brief (approximately 250 words), well-organized, and fluent summary that 

captures the key concepts presented in C on T, which can be treated as a keyword query. The 

summary is compared with the reference summary of C, which was created by NIST assessors, 

to analyze its quality.  

4.2 Number of appraisers and queries used for the controlled experiments 

Prior to conducting the performance evaluation of Q-WISE, we determine the ideal number of 

appraisers (in Section 4.2.1) and test queries (in Section 4.2.2.) to be included in our empirical 

study so that the evaluation is reliable and objective. 

4.2.1 The number of appraisers  

In statistics, two types of errors, Type I and Type II, are defined [Jones 03]. Type I errors, also 

known as α errors or false positives, are the mistakes of rejecting a null hypothesis when it is 

true, whereas Type II errors, also known as β errors or false negatives, are the mistakes of 

accepting a null hypothesis when it is in fact false. We apply the following formula in [Jones 03] 

to determine the ideal number of appraisers, n, which is dictated by the probabilities of 
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occurrence of Types I and II errors in Q-WISE‟s query suggestion/clustering/summarization 

modules: 

                                                           
(  
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(  
 
)
 

 
                                                   (  ) 

where  

   is the minimal expected difference to compare Q-WISE with Google, which is set to 1 

in our study; 

    is the variance of data (i.e., suggested keywords, cluster labels, and generated 

summaries), which is 3.85 for query suggestion, 6.00 for clustering, and 3.82 for 

summarization in our study;   

 α denotes the probability of making a Type I error, which is 0.05 in our study;  

 β denotes the probability of making a Type II error, which is 0.20 in our study. Based on 

the value of β, we can determine the probability of a false null hypothesis to be correctly 

rejected, i.e., 1 - β [Greene 00]; 

 Z is the value assigned to the standard normal distribution of suggested keywords, cluster 

labels, or generated summaries. According to the standard normal distribution, when α = 

0.05,   

 
 = 1.96, whereas when β = 0.20,    = 0.84. 

To determine the values of   and    for evaluating the query suggestion, clustering, and 

summarization modules of Q-WISE, we conducted three individual experiments, one for each 

module, in November 2010, using a randomly sampled 100 test queries for each experiment from 

the AOL log. We chose only 100 queries, since the minimal expected difference and variance, 

which are computed on a simple random sample, do not change with a larger sample set of 

queries.  
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For query suggestion (clustering, respectively), we manually evaluated the usefulness of 

keywords suggested (cluster labels created, respectively) by Q-WISE for each test query, where 

A useful keyword suggestion (cluster label, respectively) should be closely related to the 

information need expressed in a query Q, which can be regarded as a subtopic of Q. For 

summarization, we manually assessed the quality of each cluster summary created by Q-WISE 

for a test query.  

In computing the variance
8
, i.e.,   , for query suggestion (clustering, respectively), we 

calculated the mean among the number of keywords (cluster labels, respectively) suggested 

(created, respectively) by Q-WISE that are relevant to a query Q and averaged the sum of the 

square difference between the mean and the actual number of (relevant) suggested keywords 

(cluster labels, respectively) created for each one of the 100 test queries. We obtained 3.85 (6.00, 

respectively), which is the value of    for query suggestion (clustering, respectively). In 

computing the variance for summarization, we averaged the sum of the square difference 

between the mean of the number of useful summaries
9
 and the number of summaries generated 

by Q-WISE for each of the 100 test queries, which yielded 3.82 as the value of   . 

Based on the analysis conducted on query suggestion, clustering, and summarization for 

each one of the 100 test queries, we assigned the minimal expected difference for comparing Q-

WISE and Google to be 1.   = 1 implies that we expect Q-WISE to be at least as good as Google 

in terms of query suggestions, providing useful cluster labels (compatible with document titles 

provided by Google), and creating high-quality summaries (compatible with document snippets 

created by Google).  

                                                      
8 Variance is widely used in statistics, along with standard deviation (which is the square root of the 

variance), to measure the average dispersion of the scores in a distribution [Urdan 05]. 
9
 A summary is considered useful if it is of high quality (4 or 5 on a 5-point scale) as defined by DUC.  
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The values of α and β are set to be 0.05 and 0.20, respectively, which imply that we have 

95% confidence on the correctness of our analysis and that the power (i.e., probability of 

avoiding false negatives/positives) of our statistical study is 80%. According to [Kazmier 03] and 

as stated in [Hinton 04], 0.05 is the commonly-used value for α, whereas 0.80 is a conventional 

value for (1 - β), and a test with β ≤ 0.20 is considered to be statistically powerful. 

Based on the values assigned to the variables in Equation 14, the ideal number of 

appraisers required in our study is 96 for clustering and 62 for both query suggestion and 

summarization, which are calculated as follows: 
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(         )        

  
 

     

 
     

  (          )  
(         )     

  
 

     

 
    

  (             )  
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Note that the values of α, β,   , and   directly influence the size of n. Furthermore, the 

results collected from the n appraisers in the study are expected to be comparable with the results 

that are obtained by the actual population [Jones 03], i.e., web users who query web search 

engines. 

4.2.2 The number of test queries  

In determining the ideal number of test queries to be included in the controlled experiments, we 

rely on two different variables: the average attention span of an adult and the average number of 

search queries that a person often creates in one session when using a web search engine. As 

mentioned in [Rozakis 02 and Schell 96], the average attention span of an adult is between 

twenty to thirty minutes. Furthermore, Jansen et al. [Jansen 00], who have evaluated web users‟ 

behavior especially on (i) the amount of time web users spend on a web search engine, (ii) the 
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average size of users‟ queries, and (iii) the average number of queries submitted by a user, 

estimate that the average number of queries created by each user on a web search engine in one 

session is approximately 2.8. In our empirical study, each appraiser was asked to evaluate Q-

WISE using nine queries (three for each on query suggestion, clustering, and summarization). We 

consider nine to be an ideal number of queries for the performance analysis of Q-WISE, since 

evaluating nine queries takes approximately thirty to forty minutes, which falls in the time span 

of an adult. We randomly selected 186 queries (62 appraisers x 3 queries) from the AOL query 

log for query suggestion and summarization evaluation, respectively, 288 queries for evaluating 

the clustering approach of Q-WISE (96 appraisers x 3 queries), and 474 queries (= 288 + 186) for 

comparing the performance of Q-WISE and Google in terms of time required to locate desired 

information. 

4.3 Performance evaluation of Q-WISE 

We have developed various applications on Facebook so that Facebook appraisers can evaluate 

Q-WISE. We chose appraisers from Facebook, since it is a social network with users diverse in 

nationalities, ages, genders, and cultures, who can provide unbiased evaluations. 

The Facebook appraisers are asked to evaluate the (i) query suggestion module of Q-

WISE using the evaluation method proposed by [Efthimiadis 06] (see details in Section 4.3.1), 

(ii) usefulness of Q-WISE-generated cluster labels in capturing the various topics covered by Q 

(in Section 4.3.2), (iii) quality of each cluster summary determined by various factors (presented 

in Section 4.3.3), and (iv) time it takes an appraiser to locate desired information on Q-WISE, 

which is compared with Google (in Section 4.3.4). A separate Facebook application is created 

for each item (i) – (iv) listed above.  
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4.3.1 Evaluating query suggestions 

To evaluate keywords suggested by Q-WISE for a test query Q and their corresponding rankings, 

we follow the evaluation strategy suggested by [Efthimiadis 06] who claims that users are the 

best judge in analyzing the performance of an interactive query suggestion system. Our 

evaluation assesses the keywords suggested for Q by three web search engines, Google, Yahoo!, 

and Bing, over the ranked, suggested keywords provided by Q-WISE. To accomplish this task, 

appraisers are given a set of suggested keywords recommended by the three search engines for Q 

and asked to select the top-25 most useful ones [Efthimiadis 06]. After selecting the useful 

suggested keywords, each appraiser ranks the top-5 most useful ones to Q. We compare the 25 

selected and top-5 ranked keywords against the keywords suggested by Q-WISE and their 

corresponding rankings, respectively. Hereafter, appraisers‟ preferences are averaged to yield the 

measure on Q-WISE‟s query suggestion module.  

Given below are the detailed steps applied to evaluate Q-WISE‟s query suggestion module. 

1. Obtain a set of suggested keywords for each one of the 186 test queries Q from Google, 

Yahoo!, and Bing, and each appraiser who examines Q and its corresponding set of 

recommended keywords identifies 25 useful suggestions and provides the top-5 rankings. 

2. Process Q through Q-WISE and obtain for Q a ranked list of suggested keywords. 

3. Divide the ranked list of suggested keywords created in Step 2 into 

a. 2 halves (the top half and the bottom half). 

b. 3 parts (top third, middle third, and bottom third). 

4. Match the appraiser‟s choices of suggested keywords created in Step 1 (by the three web 

search engines) for Q to each of the ranked lists generated in Step 3 for Q. For each list L, 
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compute the percentage of keywords in L that are also chosen by the appraiser, which 

yields a distribution of the appraiser‟s recommended keywords over L. 

5. Match the appraiser‟s choice of the top-5 suggested keywords KS for Q to the ranked list 

created in Step 2 for Q. For the keywords in KS, add the difference in their rank positions 

with the ones provided by Q-WISE. If any of the keywords K in KS is not a keyword 

suggested by Q-WISE, then the ranking position of K is set to N + 1, where N is the 

number of suggested keywords created by Q-WISE for Q.  

6. Use the well-known Wilcoxon test to compute the statistical significance on Q-WISE-

suggested keywords. 

The percentages computed in Step 4 are averaged, which yield an estimation on the 

distribution of useful keywords on the list of suggested keywords recommended by Q-WISE. 

Figure 14 shows an example of evaluating Q-WISE‟s suggested keywords using the appraiser‟s 

preference on suggestion recommended by three web search engines for query “Tiger Woods”. 
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Query: Tiger Woods 

Set of suggested keywords from Google, Yahoo, and Bing (36 total): Baby, divorce, divorce 

settlement, cigar guy, online, net worth, photo, update, ryder cup, wiki, 2011, affair, daughter 

photo, house, girlfriend, news, elin nordegren, accident, pga tour, scandal, jokes, wife, voicemail, 

apology, game, gossip, biography, rehab, rumors, video, quits golf, wedding, workout, 

foundation, 2005 cheats, ps3 

Appraiser-selected 25 most useful suggestion: Divorce, divorce settlement, net worth, photo, 

ryder cup, wiki, affair, house, girlfriend, news, accident, pga tour, scandal, wife, apology, game,  

gossip, biography, rehab, rumors, video, quits golf, wedding, foundation, ps3 

Appraiser-ranked top-5 suggestions: divorce, wife, golf, game, biography 

Ranked list of suggested keywords created by Q-WISE: divorce, affair, photos, wife, house, 

jokes, transgressions, crash photos, golf, yacht, girlfriends, cheats, news, misstress, scandal, 

biography, games, real name, cd key code, race, accident, pga tour 2010, polo,  online game, 

family, kids, foundation, wedding, nike, website, commercial, neck injury, logo, boat, bio, 

conference, jets, schedule 

Top Half: divorce, …, cd key code 

Bottom Half: race, …, schedule 

Top third: divorce, …, news 

Middle third: misstress, …, kids 

Bottom Third: foundation, …, schedule 

Percantage of appraiser-selected 25 most useful suggestions in top half = 9/19 = 47% 

Percantage of appraiser-selected 25 most useful suggestions in bottom half = 4/19 = 21% 

Percantage of appraiser-selected 25 most useful suggestions in top third = 8/13 = 62% 

Percantage of appraiser-selected 25 most useful suggestions in middle third = 5/13 = 39% 

Percantage of appraiser-selected 25 most useful suggestions in bottom third = 1/12 = 8% 

Figure 14. An example of evaluating query keywords suggested by Q-WISE 

 

The higher the percentage on the top-half (top third, respectively) is, the more effective 

Q-WISE‟s query suggestion module is. The percentages computed for Q-WISE are compared 

against the corresponding values achieved by other state-of-the-art query suggestion tools, 

including Bing and Yahoo! (See experimental results in Section 4.5.1). 

Steps 5 and 6 measure the effectiveness of Q-WISE in ranking suggested keywords. The 

sum of the difference in the top-5 ranking positions (provided by the appraisers versus the ones 

by Q-WISE) of suggested keywords for a test query Q computed in Step 5 yield the input to the 
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Wilcoxon test in Step 6, which is a non-parametric test based on the differences between the 

ranking scores.  

                                                                             ∑   

 

   
                                                                (  ) 

where    (      ) is the signed-rank difference between two ranked suggestions. We have 

chosen the Wilcoxon test, since it considers ranking of matched pairs and is freely available 

(http://faculty.vassar.edu/lowry/wilcoxon.html).  

The lower WT is, the closer is the rankings of Q-WISE‟s suggested keywords to an 

appraiser‟s rankings. The value of WT for Q-WISE is compared against the corresponding value 

achieved by other state-of-the-art query suggestion tools, including Google and Yahoo! (in 

Section 4.5.1) through the Facebook appraisers. 

Example 1. Assume that the top-5 ranked suggested keywords provided by an appraiser for the 

test query “Tiger” are “animal”, “Woods”, “OS”, “airways”, and “clothes”, respectively. Further 

assume that the rankings of these suggested keywords as recommended by Q-WISE are 3, 2, 5, 7, 

and 18
10

, respectively, then 

   (   )  (   )  (   )  (   )  (    )       

4.3.2 Evaluating cluster labels 

For each set of cluster labels created by Q-WISE in response to each one of the 288 randomly 

chosen test queries Q, the appraisers are required to measure the usefulness of cluster labels as 

defined in [Osinski 06]. A cluster label is useful if it includes concise and meaningful keywords 

with respect to Q, whereas a useless label is either ambiguous or includes senseless description. 

The Facebook appraisers mark each cluster label as useful or useless. 

                                                      
10

 Assuming that “clothes” is not a keyword suggested by Q-WISE for the query Q “Tiger”, its ranking 

position is set to 18 (17 + 1), where 17 is supposed to be the total number of suggestions made by Q-

WISE for Q. 
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Given a set of cluster labels CL created by Q-WISE, the quality of CL is measured as the 

fraction of all the cluster labels in CL that the appraisers judge as useful, which is defined as 

                                                                          
          

        
                                                        (  ) 

where Usefulness is the total number of cluster labels judged as useful and Total_Cls is the total 

number of created cluster labels in CL. Qual_Val ranges from 0.0 (all cluster labels are useless) 

to 1.0 (all cluster labels are useful). The higher Qual_Val is, the more useful Q-WISE-created 

cluster labels are. The value of Qual_Val achieved by Q-WISE is compared against the 

corresponding value achieved by other state-of-the-art web search clustering tools (in Section 

4.5.2). 

4.3.3 Evaluating summaries 

Using the DUC 2002, DUC 2003, and DUC 2005 datasets and an evaluation guideline, which is 

a set of quality questions developed in 2001 by Chin-Yew Lin at ISI [Lin 02], a summary created 

by a summarization system can be evaluated. These questions address the quality of 

grammaticality, non-redundancy, referential clarity, structure and coherency, and 

responsiveness on a generated summary.  

1. Grammaticality: A high-quality summary should not exhibit any datelines, i.e., a sentence in 

the summary that contains only a date but no text, system-internal formatting (formatting such as 

html tags), capitalization errors, and obviously ungrammatical sentences (such as fragments and 

missing components) that jeopardize the readability of the text. 

The grammatical questions specified in DUC 2002 and 2003 for evaluating the quality of 

the grammar in a generated summary are listed below [DUC-QUALITY 2003]. 

1. How many gross capitalization errors are there? 

2. How many sentences have incorrect word order? 
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3. How many times does the subject fail to agree in number with the verb? 

4. How many of the sentences are missing important components (e.g., the subject, main 

verb, direct object, and modifier) that cause the sentence to be ungrammatical, unclear, or 

misleading? 

5. How many times are unrelated fragments joined into one sentence? 

6. How many times is an article missing or used incorrectly? 

7. How many dangling conjunctions are there (such as “and”, “however”, etc.)? 

2. Non-redundancy: Unnecessary repetition can take the form of (i) whole sentences that are 

repeated, (ii) replicated facts, or (iii) repeated use of a noun or noun phrase, e.g., using "Mike 

Jones" when the pronoun "he" would suffice, which should be excluded from a summary. The 

redundancy question, “How many instances of unnecessarily repeated information are there?“ 

from DUC 2002 and 2003 [DUC-QUALITY 2003], is used for evaluating the degree of anti-

redundancy in a generated summary. 

3. Referential Clarity: It should be easy to identify who or what the pronouns and noun phrases 

in a summary are referring to. If a person or an entity is mentioned, its role in the summary 

should be clear. A reference is treated as unclear if an entity is referenced but its identity or 

relation to the content of the summary is uncertain. 

The referential clarity questions from DUC 2002 and 2003 for evaluating the referential 

clarity of a generated summary are given below [DUC-QUALITY 2003]. 

1. How many pronouns are there whose antecedents are incorrect, unclear, missing or come 

only later? 

2. How many nouns are impossible to determine clearly who or what they refer to? 

3. How many times should have a noun or noun phrase been replaced with a pronoun? 
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4. Structure and Coherence: A summary should be well-structured and well-organized, which 

should not be a heap of related information but should be constructed from sentences to yield a 

coherent body of information on a topic instead. The coherence question, “About how many 

sentences suggest a wrong cause-effect relationship, or just don‟t fit in topically with 

neighboring sentences?” from DUC 2002 and 2003 [DUC-QUALITY 2003], is used for 

evaluating the structure and coherence of a summary. 

5. The DUC 2005, DUC 2006, and DUC 2007 datasets include an evaluation on the 

responsiveness of a multi-document summary. Responsiveness is measured according to the 

amount of information in a summary that actually address the information need expressed in a 

topic statement, which is created by DUC assessors. 

All of the guidelines listed above are measured on a 5-point scale as suggested by DUC. 

We have posted the 186 queries extracted randomly from the AOL query logs, their respective 

summaries created by Q-WISE, and the evaluation questions listed above on Facebook for the 

appraisers to evaluate. 

4.3.4 Q-WISE vs. Google 

To assess the ability of Q-WISE in assisting the user locate the desired information at 

least as fast as, or faster than a web search engine, Facebook appraisers are asked to evaluate the 

time it takes to satisfy the information need expressed in a test query using Q-WISE and Google, 

respectively. Facebook appraisers (i) select an arbitrary test query Q from the 474 queries 

randomly chosen from the AOL query log for comparing Q-WISE and Google, and the system to 

evaluate (i.e., Google or Q-WISE), (ii) look for the retrieved (created, respectively) titles and 

snippets (cluster labels and summaries, respectively) that address the information need expressed 

in Q, and (iii) record the time required to locate the information need specified in Q. To avoid 
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any bias on the evaluation, the sources of the results retrieved in response to a test query are not 

specified, and they are displayed using a heading and a text span. In the case of Google, each 

heading (text span, respectively) is the title (snippet, respectively) of a retrieved document, 

whereas in the case of Q-WISE, each heading is a cluster label and its text span is the first 

sentence of the corresponding summary created by Q-WISE. Figure 15 (16, respectively) shows a 

(portion of the) sample results page for the query “Dental Health” created by Q-WISE (Google, 

respectively). We include only the first three text spans in the two pages. 

 

Dental Hygienist 

A dental hygienist is a licensed dental professional who specializes in preventive oral health, 

typically focusing on techniques in oral hygiene.  

Dental Guide  

The Dental Guide has been a well-established guide to UK dentistry for over 10 years and is 

your one shop for any dental information both for the consumer and dental health professionals.  

Dental Health News  

Recently, dentistry has taken a new role in our live by adding an adjective to its process: comfort 

Dentistry  

… 

Dental care Tips  

… 

Oral Hygiene  

… 

American Dental Association  

… 

Dental Health Treatment  

… 

Child Dental Health  

… 

Dental Procedures  

… 

Figure 15. The (portion of the) sample results page for the query “Dental Health” generated by Q-WISE 

(i.e., System 1) 

http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dental Guide
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dental Health News
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dentistry
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dental care Tips
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Oral Hygiene
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_American Dental Association
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dental Health Treatment
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Child Dental Health
http://localhost/Face/Art/php/article/main/viewArticle.php?searchItem=dental+health#section_Dental Procedures
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Dental Health: MedlinePlus 

A list of trusted dental health resources compiled by the National Institutes of Health and the 

US National Library of Medicine. 

Simple Steps To Better Dental Health 

The root topic for the Simple Steps to Dental Health program. 

ADA: American Dental Association - Home 

ADA: American Dental Association, Professional and Public resources. ... Filter by Specialty, 

All types of dentistry, Dental Public Health, Endodontics ... 

Oral and Dental Health Center: Tooth, Tongue, Gums, and Other Oral ...  

… 

Dental Health 

… 

Dental Health Questions Directory Library Ask The Dentist ...  

… 

Dental Health Magazine: Free Dentistry Information, Oral Care Tips ...  

… 

Colgate Kids - Colgate Toothpaste & Toothbrushes | Oral Hygiene ...  

… 

Group Dental, Health, and Life Insurance by BEST Life 

… 

ADHA - Dental Hygienists, Oral Health  

… 

Figure 16. The (portion of the) Sample results page for the query “Dental Health” generated by Google 

(i.e., System 2) 

 

4.4 Evaluation measures 

In this section, we present the evaluation measures that quantify the performance of Q-WISE on 

generating summaries that satisfy the information need of a user and the effectiveness and 

efficiency of its clustering approach. As stated in Section 4.3.3, a Facebook appraiser evaluates 

the grammar, anti-redundancy, coherence, referential clarity, and responsiveness of a summary S, 

whereas the ROUGE score (introduced in Section 4.4.1) evaluates the amount of information 

covered in S that address the corresponding query (topic) in a substantial way. Moreover, an 

http://www.nlm.nih.gov/medlineplus/dentalhealth.html
http://www.simplestepsdental.com/
http://www.ada.org/
http://www.webmd.com/oral-health/default.htm
http://webtech.kennesaw.edu/jcheek3/dentalhealth.htm
http://dental--health.com/
http://worldental.org/
http://www.colgate.com/app/Kids-World/US/HomePage.cvsp
http://bestlife.com/
http://www.adha.org/oralhealth/index.html


www.manaraa.com

61 

 

appraiser evaluates the quality of Q-WISE-generated cluster labels, whereas the F-measure 

(introduced in Section 4.4.2) evaluates the quality of its generated clusters.  

4.4.1 Summarization 

We consider the ROUGE toolkit (version 1.5.5), which is widely adopted for summary 

evaluation, to analyze the summarization performance of Q-WISE on the DUC datasets. ROUGE 

measures the quality of a summary by counting the overlapped units between a generated 

summary S and a set of reference summaries created by DUC experts using the same set of 

documents. The higher the ROUGE score is, the better the summarization method that generates 

S performs, which is defined as 

                                        
∑ ∑            (     )                

∑ ∑       (     )                

                             (  ) 

where n (≥ 1) is the length of the (overlapped) n-gram to be counted,            (n-gram) is the 

number of overlapped n-grams in S and the set of reference summaries RefSum, and       (n-

gram) is the number of n-grams in the set of reference summaries. More specifically, we will 

compute ROUGE-2 (unigram- and bigram-based co-occurrence statistics), ROUGE-SU4 

(trigram and 4-gram-based co-occurrence statistics), and ROUGE-BE (all co-occurrence 

statistics given that matched keywords have the same part of speech tag) to analyze the 

performance of Q-WISE. 

The DUC website includes the ROUGE-2, ROUGE-SU4, and ROUGE-BE scores of 30 multi-

document summarization systems for each dataset, which we compare Q-WISE against. 

4.4.2 Clustering 

Clusters generated by Q-WISE are evaluated against the ideal clusters (created by humans) of a 

given dataset using the widely-known F-measure, which is based on precision and recall. 

Precision (Recall, respectively) is the ratio of the number of common documents in an ideal 
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cluster I and a generated cluster C to the total number of documents in C (I, respectively). The 

higher the F-measure is, the better the clustering method performs. We have compared our 

clustering results with other state-of-the-art tools in web document clustering (See Section 4.5.3 

for details). 

4.5 Performance evaluations 

Having introduced the evaluation measures for assessing the performance of Q-WISE, we first 

analyze the effectiveness of its trie approach in recommending useful query keywords (in Section 

4.5.1). Hereafter, we present the degree of relevance of cluster labels created by Q-WISE with 

respect to the contents of the corresponding clusters based on the assessments provided by the 

Facebook appraisers involved in our controlled experiment (in Section 4.5.2). We also evaluate 

the effectiveness and efficiency of Q-WISE‟s clustering approach (in Section 4.5.3), and the 

quality of Q-WISE-created summaries (in Section 4.5.4). We measure the query processing time 

of Q-WISE in generating clusters and their corresponding summaries (in Section 4.5.5) and the 

anticipated time to locate desired information on Q-WISE and Google, respectively (in Section 

4.5.6). In each section, we compare and contrast the performance of the evaluated component of 

Q-WISE with the corresponding state-of-the-art tools. 

4.5.1 Results on query suggestion 

We have collected the evaluations from 62 Facebook appraisers who examined the query 

keywords suggested by Q-WISE on each one of the 186 test queries. Based on the evaluations, 

we computed the (i) averaged percentage on the appearance (rankings, respectively) of suggested 

keywords for each test query on each of the five parts, i.e., top-half, bottom-half, top-third, 

middle-third, and bottom-third, and (ii) the Wilcoxon score (as defined in Section 4.3.1). These 

percentages were compared against the ones achieved by Yahoo!, Bing, and a baseline measure 
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using the AOL query log. The baseline measure determines suggested queries (i.e., query 

keywords) solely based on the frequency of the queries in the query log, i.e., the number of times 

an original user‟s query is modified to the suggested ones. The results are depicted in Figures 17 

and 18, respectively. 

We briefly introduce the hitting time algorithm, query flow graphs, and query frequency 

used by Bing, Yahoo!, and the baseline measure, respectively in creating a ranked list of query 

suggestions. Note that Google is not considered in this study, since its query suggestion 

algorithm is not available to the public and thus cannot be compared. 

Bing: MSN search (now known as Bing) constructs a bipartite graph using a query log
11

 and 

computes hitting time (i.e., click frequency) to determine query keywords to be recommended for 

a user‟s query. A bipartite graph   (       ) consists of a query set     which is the set of 

queries extracted from the query log, and a URL set     which is the set of URLs specified in the 

log. An edge in E from a query i to an URL k denotes that k was clicked by the user who 

submitted i to the search engine, and the edge is weighted by the click frequency, denoted w(i, k), 

which indicates the number of times k is clicked when i is the search query. During the query 

suggestion phase, a modified subgraph SG is constructed from G using the depth-first search 

approach on a user‟s query Q with queries in    so that the search of suggested queries for Q 

stops when the number of nodes representing suggested queries on SG is larger than a predefined 

number of n queries (set by Bing). SG is a modified subgraph of G, since each URL node k in 

SG, which is also in the original G, is removed, but the connected edges of k are retained. 

Hereafter, Bing defines the transition probability between any two queries, i and j, linked by an 

edge on SG, which computes the degree of similarity between i and j as 

                                                      
11 In comparing with Q-WISE, we use the same AOL query log on each of the three query suggestion 

systems, i.e., Bing, Yahoo!, and the baseline measure. 
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                                                       (  ) 

where k is a URL in G     ∑  (   )    
, and     ∑  (   )    

. For all the queries exhibited 

in SG, excluding the one being searched, Bing retrieves the queries with the top-n largest 

transition probabilities with respect to the user‟s query i as suggestions, where n is set to be 10 

by Bing. 

Yahoo!: The Yahoo! search engine recommends query keywords by using query flow graphs. A 

query flow graph is an aggregated representation of the latent querying behavior contained in a 

query log. Intuitively, in a query flow graph, a directed edge from query    to query    denotes 

that the two queries are part of the same search session. Any nodes on a path in a query flow 

graph may be seen as potential query suggestions, whose likelihood is given by the strength of 

the edges along the path. A directed edge (  ,   ) is labeled with (i) the probability that a user 

creates    after    in the same search session (i.e.,    is a possible suggestion to   ), and (ii) the 

type of the transition, known as the Query Reformulation Type (QRT). Query Reformulation 

Types indicate the relationship between two queries, i and j, linked by a directed edge in a query 

flow graph, which include Equivalent Rephrasing (i.e., j has the same meaning as i but is 

rephrased differently), Parallel Move (i.e., i and j are two subtopics of the user‟s query), 

Generalization (i.e., j is a generalization of i), Specialization (i.e., j is a special case of i), etc. In 

a query flow graph created by the Yahoo! Search engine, edges are directed and are annotated 

with two labels, a weight and the QRT, as given by a pre-trained model
12

. Weights are defined as  

                                                 (    )   (    )  ∑  (   )
  (   )  

                                             (  ) 

                                                      
12

 A group of Yahoo! editors manually labeled the set of query pairs (q,   ) in each search session using 

one of the reformulation types to create the training dataset. 
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where r(    ) denotes the number of times query q has been directly modified to query    as 

shown in a query log, and the weight  (    ) represents the probability of query q and query    

being in the same querying session. A small excerpt of a query flow graph is shown in Figure 19, 

where S and P denote the Specialization and Parallel Move query reformulation types, 

respectively.  

Yahoo! retrieves the top-n nodes (queries) based on their edge weights in a query flow 

graph, such that the chosen nodes, which are suggested queries, have the highest edge weights 

among all the nodes that are either directly connected to a user‟s query node or any indirect 

nodes that are connected to a node already retrieved as a suggestion, where n is set to be 10 by 

Yahoo!. As shown in Figure 19, given the user‟s search query “barcelona”, the query suggestions 

retrieved in order are “Barcelona fc” (0.08), “Barcelona weather” (0.04), “Barcelona hotels” 

(0.02), “cheap Barcelona hotels” (0.07), and “luxury Barcelona hotels” (0.03).  

Baseline: A query suggestion approach is often compared against a baseline measure, which 

ranks query suggestions strictly based on their frequencies of occurrence in a query log. The list 

of queries suggested by a baseline measure is created by retrieving all queries in the query log 

that include the user‟s query Q as a substring. The more frequent a query suggestion S, which 

includes Q as a substring in the query log is, the higher S is ranked. 

Among the four systems involved in the evaluation, Figure 17 shows that Q-WISE 

achieves a relatively high percentage over the top-half and top-third and a relatively low 

percentage on the bottom-half and bottom-third, which imply that query keywords suggested by 

Q-WISE are useful, since they are often chosen by Facebook appraisers. Although Yahoo! has a 

slightly higher percentage than Q-WISE over the top-half, Q-WISE achieves a much higher 

percentage on the top-third, which suggest that useful keywords are often ranked higher by Q-
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WISE than by Yahoo! (and Bing, in addition to the baseline measure, respectively). Among all 

the systems involved in the performance evaluation, Q-WISE achieves the lowest Wilcoxon test 

score, as shown in Figure 18, which indicates that the ranking of query keywords suggested by 

Q-WISE is the closest to the Facebook appraisers‟ provided rankings, and Q-WISE‟s ranking 

strategy is the most effective compared with Yahoo!, Bing, and the baseline measure.  

  

Figure 17. Averaged percentages of useful suggested keywords over the 5 parts on the ranked query 

suggestion lists created by Q-WISE, Yahoo!, Bing, and the baseline measure, respectively computed using 

Facebook appraisers‟ evaluations 

 

 

Figure 18. The Wilcoxon test scores for Q-WISE, Yahoo!, Bing, and the baseline measure, respectively 

based on the rankings compiled by Facebook appraisers 
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Figure 19. An excerpt of the query flow graph around the query “barcelona hotels”, which is created by 

using the Yahoo! UK query log 

  

4.5.2 Quality of Q-WISE-created cluster labels 

We have collected the evaluations provided by the 96 Facebook appraisers who examined and 

assessed the usefulness of Q-WISE-created cluster labels for each one of the 288 test queries (as 

discussed in Section 4.3.2). Based on the assessments of the appraisers, 92.2% of Q-WISE-

created cluster labels were considered useful. Figure 20 shows the average percentages of useful 

cluster labels determined by 20 out of the 96 Facebook appraisers involved in the evaluation. The 

percentages of useful cluster labels are almost always in the upper eightieth and ninetieth 

percentile. The few cases where the average percentages are below 80 are due to the low quality 

of retrieved titles and snippets from where the labels were constructed. 
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Figure 20. Average percentages of useful Q-WISE-created labels determined by 20 (out of the 96) 

Facebook appraisers 

 

4.5.3 The effectiveness and efficiency of Q-WISE’s clustering approach 

We have evaluated the effectiveness and efficiency of Q-WISE‟s clustering approach using the 

three datasets CS1, CS2, and CS3 defined in Section 4.1.1. Effectiveness was measured using the 

well-known F-measure, whereas efficiency was based on the processing time required to cluster 

each one of the three datasets. The F-measure and processing time are compared against the ones 

achieved by WhatsOnWeb [Giacomo 07] and Armil [Geraci 06] using the same three datasets. 

We chose the two clustering methods for comparisons, since (i) unlike other clustering 

approaches, their algorithms are publicly available and (ii) they outperform the Vivismo 

(www.vivismo.com) clustering engine, which is considered an industrial standard on the 

evaluation of clustering quality and user satisfaction
13

. The F-measure achieved by each of the 

three clustering approaches and their processing time are depicted in Figures 21 and 22, 

respectively.  

                                                      
13  Vivismo won the annual “best meta-search award” offered by the online magazine 

SearchEngineWatch.com in 2001 and 2002. 
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We briefly introduce the clustering approaches of WhatsOnWeb and Armil on web 

search results, respectively below. 

WhatsOnWeb: WhatsOnWeb [Giacomo 07] clusters web documents retrieved in response to a 

user query Q using a topology driven approach, which relies on a snippet graph. Intuitively, a 

snippet graph captures the URLs retrieved by a web search engine in response to Q, along with 

their relationships, which are determined by analyzing the snippets of the retrieved URLs. Each 

vertex of a snippet graph is a URL, and an edge connecting two URLs indicates that the 

corresponding snippets share some stemmed keywords. The document clusters are derived from 

a snippet graph by finding communities of vertices, which are sets of vertices that have high 

edge weights from a topological point of view, created by using a recursive divisive strategy 

based on graph connectivity. 

The snippet graph G of a set of URLs U retrieved in response to Q is a labeled, weighted 

graph defined as follows: 

 Each vertex    in G denotes a URL u   U, and the label of    is the title of u. 

 The label of an edge e = (   ,    ) in G, where   ,      U, is the concatenation of all the 

common sentences, which are maximal subsequences of consecutive stemmed keywords, 

shared between the two snippets     and     of    and   , respectively that are 

connected by e. The score of a sentence σ shared between     and     is defined as 

    ∑      , where    is the degree of relevance of the common keyword k in the 

two snippets with respect to the snippets computed using the standard vector space 

model, the weight of e is    = ∑       
, and    is the concatenation of all sentences 

shared by     and    . 
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WhatsOnWeb is one of the few web clustering engines based on graph theory. A 

drawback of WhatsOnWeb is the slow response time required for processing a query due to the 

inefficiency of generating clusters from a snippet graph. 

Armil: To cluster documents retrieved in response to a search query, Armil [Geraci 06] maps the 

snippets of retrieved results into a vector space endowed with a distance function, which is 

treated as a metric. Hereafter, a modified furthest-point-first algorithm (M-FPF) is applied to 

generate the clusters of snippets. Given a set of points N in a vector space, each of which denotes 

a retrieved document, and an integer k, which denotes the number of clusters to be created, the 

FPF algorithm first selects an arbitrary point      and picks the next point (up till the k
th

 

point), which maximizes the distance of all the chosen points. Eventually, the k chosen points 

represent the k most dissimilar documents. Armil creates a cluster    (     ) by including 

all the points (documents) closer to    than to any other points, where    is a chosen point from 

where    is created. The M-FPF algorithm generates the same clusters of the standard FPF 

algorithm, except that it avoids unnecessary distance computation to speed up the computation. 

In contractually to FPF, M-FPF relies only on pairwise distance calculations between snippets. 

Q-WISE, however, does not depend on a (i) distance function or (ii) pre-determined number of 

clusters for performing clustering, which could differ from one query to another and may affect 

the clustering quality if chosen inappropriately.  

Among the three systems involved in the clustering performance evaluation, Q-WISE 

achieves the highest F-measure, as shown in Figure 21, which indicates that clusters generated 

by Q-WISE on each one of the three datasets used in the evaluation are the closest to the pre-

determined ideal set of clusters (as defined in Section 4.1.1) than the other two. Figure 22 shows 

that Q-WISE is the fastest clustering method compared with its counterparts. 



www.manaraa.com

71 

 

 

Figure 21. (Average) F-measure(s) over the three datasets used for evaluating the effectiveness of the 

clustering approach of Q-WISE, Armil, and WhatsOnWeb, respectively 

 

 

Figure 22. (Average) processing time for clustering each one of the three datasets CS1, CS2, and CS3 by 

Q-WISE, Armil, and WhatsOnWeb, respectively 
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redundancy, (iii) referential clarity, (iv) structure and coherence, and (v) responsiveness of each 

Q-WISE-created summary (as defined in Section 4.3.3). Besides the appraisers‟ evaluations, the 

quality of a Q-WISE-created summary, which is measured using the information captured by the 

summary, was quantified using the documents in the three DUC datasets and the evaluation 

metrics introduced in Sections 4.1.2 and 4.4.1, respectively. The results are depicted in Figures 

23 and 24, respectively. We have also compared the quality (scores) of Q-WISE-created 

summaries against thirty automatic multi-document summarization systems as shown in Tables 3 

and 4, respectively
14

. 

As illustrated in Table 3, Q-WISE achieves the highest score on non-redundancy, the 

second highest on referential clarity and responsiveness, the fourth on structure and coherence, 

and the fifth on Grammar. The comparatively lower scores on grammar, in addition to structure 

and coherence, among the five quality measures are due to the fact that Q-WISE‟s summarization 

approach is extractive, which is not sophisticated in connecting extracted sentences in a 

summary. The extractive summarization approach adopted by Q-WISE, however, is not a major 

drawback, since compared with the thirty summarizers, Q-WISE is ranked in the top five on each 

measure.  

Table 4 shows that Q-WISE achieves the second (third, respectively) highest ROUGE-2 

and ROUGE-SU4 (ROUGE-BE, respectively) score(s) among the thirty summarizers involved in 

the evaluation. This indicates that the information included in Q-WISE-created summaries are of 

high quality, i.e., Q-WISE‟s summaries address a user query in a substantial way, compared with 

other low ranking summarization systems. 

                                                      
14 The summarization performance results of the thirty systems are posted under the DUC website. 
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Figure 23. The average quality measures, on the scale of 1-5, of Q-WISE-generated summaries provided 

by Facebook appraisers 

 

 

Figure 24. The ROUGE scores achieved by Q-WISE using the three DUC datasets 

 

 Score Q-WISE is Out-Performed by Q-WISE Outperforms 

Grammatically 4.35 5 25 

Non-redundancy 4.81 1 29 

Structure & Coherence 3.15 4 26 

Referential Clarity 4.01 2 28 

Responsiveness 4.33 2 28 

Table 3. Comparisons between Q-WISE and the thirty summarizers participated in DUC in terms of the 

five quality measures 

 Score Q-WISE is Out-Performed by Q-WISE Outperforms 

ROUGE-2 0.12 2 28 

ROUGE-SU4 0.17 2 28 

ROUGE-BE 0.06 3 27 

Table 4. Comparisons between the quality (based on the ROUGE scores) of Q-WISE-created summaries 

and the ones created by the thirty summarizers participated in DUC in response to each test query 
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4.5.5 Query processing time of Q-WISE 

We have measured the processing time of the query suggestion, clustering, and summarization 

modules of Q-WISE, respectively using 474 queries randomly selected from the AOL query log. 

As shown in Figure 25, the processing time required to generate query suggestions for a user‟s 

input is on an average of 0.07 seconds, which indicates that Q-WISE generates query suggestions 

instantly while the user is formulating his/her query, and is comparable to Yahoo!, Google, and 

Bing. The processing time required to generate document clusters and their corresponding labels 

is on an average of 0.23 seconds. Last, but not least, Q-WISE generates a summary in less than 2 

seconds on an average. Figures 26, 27, and 28 show the processing time for query suggestions, 

clustering, and summarization, respectively on 15 selected queries.  

As reported in [Carpineto 09], fetching documents from a public search engine using its 

API takes up a significant portion of the total query processing time, which increases the time 

required to generate a summary using Q-WISE. Table 5 shows the average time required to fetch 

200 documents from Yahoo!, Google, and Bing, respectively on 40 queries, as reported in 

[Carpinto 09]. 

 

Figure 25. Average processing time of Q-WISE‟s query suggestion, clustering, and summarization 

approaches 
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Figure 26. Processing time on query suggestions for 15 (out of 474) queries 

 

 

Figure 27. Processing time on clustering retrieved documents for 15 (out of 474) queries 
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Figure 28. Processing time on summarizing clustered documents for 15 (out of 474) queries 

 

 Average Delay Standard Deviation 

Yahoo! 2.12 0.65 

Google 5.85 2.35 

Bing 0.56 0.43 

Table 5. Average processing time required by Yahoo!, Google, and Bing using their APIs, respectively to 

extract 200 search results for each one of the 40 queries 
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Figure 29. Average time required to locate desired information on Q-WISE and Google, respectively, 

which are reported by each one of the 20 (out of 158) Facebook appraisers 

 

As shown in Figure 29, the time required to locate information on Q-WISE is comparable to 
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interpretations of the user‟s query. While this may be a bad feature to users who are specific in 

their search and don‟t want to see different interpretation of the query, it is helpful to a majority 

of web search users who write short ambiguous queries.  

As Q-WISE is fully automated and requires no human feedback, it cannot distinguish 

worthwhile from useless sentences. I have noticed in some cases, that a sentence in a Q-WISE-

generated summary is just a list of words that do not form a useful sentence. Such sentences 

could generate from bibliographies, tables, images, tag clouds, etc. Q-WISE needs more work to 

preprocess retrieved documents more efficiently and avoid such sentences. Moreover, sentences 

in a Q-WISE-generated summary are based on text features, i.e., a sentence‟s position and length, 

which might affect the quality of the summary. More analysis needs to be made to determine 

what people regard as relevant and useful sentences for a particular topic. Finally, Q-WISE can 

only work for documents in English.  
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Chapter 5 

Conclusions 

Current web search engines, such as Google, Yahoo!, and Bing, offer users a mean to locate 

desired information available on the Web. In response to a user query, a search engine retrieves a 

list of ranked documents S and displays each with a title and a snippet to help users quickly 

identify the document(s) of interest. However, whenever a user query is ambiguous, it is very 

difficult, if not impossible, for a search engine to identify precisely the set of documents that 

satisfy the user‟s intended request. In addition, since snippets are created using sentences/phrases 

in the corresponding retrieved documents solely based on the keywords appeared in the user 

query, they (i) may not always capture the main content of the corresponding documents and (ii) 

are similar in contents and thus are not useful in distinguishing the contents of the corresponding 

documents. 

In order to improve existing web searches, we have developed a query-based, web 

informative summarization engine, denoted Q-WISE, which (i) assists its users in formulating 

their queries using a simple, yet effective trie-based query suggestion module, (ii) clusters 

retrieved documents based on the various topics covered in the documents which match the 

interpretations of the information needs specified in a user query, (iii) assigns a meaningful label 

to each cluster C, which identifies the topic/contents of the documents in C, and (iv) summarizes 

documents on each specified topic to assist the user quickly identify the results of interest. 

Experimental results using well-known datasets and our Facebook applications show that Q-

WISE (i) recommends useful query suggestions, (ii) solves the ambiguity problem of search 

queries by considering the various interpretations of each query, (iii) provides an effective and 

efficient algorithm, which clusters retrieved documents related in contents based on the various 
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topics covered in the interpretations, and (iv) assists the user locate desired information in time 

comparable to commercial web search engines using created summaries. 

Q-WISE is a significant contribution to the web search community, since it (i) is user-

friendly, (ii) solves the ambiguous problem on interpreting the intended information need of a 

web user, (iii) clusters closely related documents that could be scattered all over the ranked result 

set, and (iv) provides an enhanced snippet, i.e., cluster summary of each document cluster which 

assists users to quickly identify information of interest. 

Regarding future work, we plan to examine using an open source search engine, such as 

Nutch (http://nutch.apache.org/) or Lucene (http://lucene.apache.org/java/docs/index.html), 

instead of querying commercial web search engines, to retrieve the top-100 documents to 

generate topic-based clusters and summaries. A stand-alone search engine (i) can reduce the 

overhead required to fetch and download results from existing web search engines and (ii) avoids 

the access restrictions imposed by existing search engines API‟s, which allow only a limited 

number of queries per day and thus reduce the number of users who can use Q-WISE on a daily 

basis. We will also consider new features, such as noisy data, frequency of information in 

sentence, importance of document using authors and/or page traffic, etc., to enhance our 

summarization approach. The additional features will be analyzed for their accuracy in selecting 

informative sentences using multiple regression analysis. 
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